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 A B S T R A C T

Accurate water quality modeling in water distribution systems (WDS) is essential for ensuring safe and reliable 
drinking water. While numerical solvers such as EPANET provide robust simulations, their computational 
cost increases substantially for real-time or large-scale applications, particularly when boundary and initial 
conditions vary over time. Existing Physics-Informed Neural Network (PINN) approaches face limitations 
in handling such changing conditions, despite their prevalence in real WDS operations. This study focuses 
on enhancing the adaptability of PINNs for chlorine modeling under diverse and dynamic scenarios. The 
proposed framework embeds the governing Advection–Reaction (AR) equation into a deep learning architecture 
and introduces targeted modifications to the formulation of boundary and initial condition losses. Training 
data are generated using EPANET simulations, and the framework is evaluated under multiple scenarios, 
including constant and time-varying velocities as well as fixed and dynamic boundary and initial conditions. 
Results demonstrate that a PINN model explicitly designed for boundary-condition adaptability can accurately 
reproduce EPANET water quality simulations while reducing computational demands. Key factors influencing 
performance, such as proper PDE specification, loss balancing, and data preprocessing, are identified. Although 
the analysis is conducted on a single-pipe testbed to isolate these effects, the findings establish an essential 
foundation for extending adaptive PINNs to full WDS networks. The primary contribution of this work is the 
development and demonstration of a PINN architecture capable of reliably adapting to varying boundary and 
initial conditions, addressing a critical gap in current PINN-based water quality modeling research.
. Introduction

Water distribution systems (WDS) are vital components of critical 
rban infrastructure, ensuring a reliable supply of potable water to 
ouseholds, industries, and commercial establishments (Walski et al., 
003). Modeling both the hydraulic and water quality dynamics of 
hese systems is essential for effective planning and management strate-
ies aimed at optimizing operations, improving efficiency, and main-
aining regulatory water quality standards (Rossman, 2000; Giustolisi 
t al., 2008). Water quality modeling, in particular, requires accurate 
haracterization of the transport, mixing, and decay of chemical sub-
tances within networks (Rossman, 2000), providing essential insights 
or contamination detection, water safety assessment, and real-time 
ecision support (Ostfeld et al., 2008).
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ndrea.cominola@tu-berlin.de (A. Cominola), ostfeld@cv.technion.ac.il (A. Ostfeld).

Traditionally, water quality dynamics in WDS are modeled using 
advection–diffusion–reaction (ADR) equations to describe the move-
ment and decay of substances such as chlorine, chloramine, or contam-
inants (Trussell and Umphres, 1978). These processes depend strongly 
on boundary and initial conditions, which vary with operational states, 
demand fluctuations, water source changes, valve operations, and con-
tamination events. As a result, numerical simulations must often be 
recomputed for each change in hydraulic or chemical conditions, lead-
ing to substantial computational burdens for large networks, real-time 
applications, or repeated simulation tasks.

EPANET, an open-source software developed by the U.S. Environ-
mental Protection Agency (EPA), one of the most widely used tools 
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for WDS simulation (Rossman et al., 2020), accurately handles these 
dynamics but inherits the computational expense inherent to traditional 
numerical solvers. Recent studies highlight how these costs grow when 
boundary and initial conditions are rapidly changing, exactly when fast 
simulation is most critical (Klise et al., 2017).

To alleviate these limitations, data-driven machine-learning (ML) 
based surrogate models have been explored for WDS analysis (Shaw 
et al., 2017). Among these approaches, Physics-Informed Neural Net-
works (PINNs) have emerged as particularly promising due to their 
ability to incorporate governing physical laws directly into the learning 
process (Raissi et al., 2019). Specifically, PINNs are neural networks 
that leverage deep learning architectures to solve supervised learning 
tasks while embedding nonlinear physical laws, such as governing 
partial differential equations (PDEs), directly into the loss function. 
PINNs have shown strong potential as fast, physically consistent sur-
rogate models for a variety of engineering applications (Karniadakis 
et al., 2021), and initial studies have demonstrated their applicability 
to WDS hydraulics (Ashraf et al., 2024). However, a major barrier 
remains largely unaddressed: standard PINN formulations struggle to 
adapt when boundary and initial conditions change, even though such 
changes are pervasive in realistic WDS operations.

Most existing PINN implementations assume fixed or simple bound-
ary conditions, limiting their ability to generalize across different sce-
narios or to serve as flexible real-time surrogates. In the context of 
water quality modeling, where velocities, source concentrations, or 
contamination inputs may vary dynamically, this lack of adaptability 
becomes a central challenge. Addressing it is essential for develop-
ing PINN-based surrogates that can replace EPANET simulations in 
operational or scenario-based analyses.

In this study, we address this gap by developing and analyzing 
PINN architectures designed explicitly to adapt to diverse and changing 
boundary and initial conditions for chlorine transport in pipe systems. 
Our framework embeds the Advection–Reaction (AR) equation within 
a PINN structure and evaluates how architectural choices and loss 
function formulations influence the model’s ability to generalize across 
fundamentally different PDE boundary regimes. We focus on a con-
trolled single-pipe testbed to isolate, study, and compare these effects 
under (i) constant vs. time-varying velocities, (ii) fixed vs. dynamic 
concentration boundary conditions, and (iii) varying initial conditions.

In the initial development proposed in this study, our training 
dataset consists of numerical solutions derived from EPANET, but 
future implementations will integrate sensor-based real-time measure-
ments.

The PINN takes the spatio-temporal coordinates and flow veloc-
ity (𝑡, 𝑥, 𝑣) as input and predicts chlorine concentration 𝐶(𝑡, 𝑥, 𝑣), en-
abling it to capture the evolving transport dynamics. Although prior 
work has proposed conceptual formulations for PINNs in WDS appli-
cations (Daniel et al., 2024), practical investigations of adaptability to 
boundary and initial conditions remain limited. This study provides a 
detailed implementation, systematic evaluation, and discussion of the 
model behaviors that affect such adaptability.

The main contribution of this work is a comparative analysis of 
PINN model variations specifically aimed at improving adaptability to 
changing PDE boundary and initial conditions, addressing a critical 
requirement for deploying PINN-based surrogates in realistic WDS 
applications.

The remainder of this paper is organized as follows. Section 2 
describes the methods, including the formulation of the chlorine model 
and the PINN framework. Section 3 outlines the experimental settings 
and simulation scenarios. Sections 4 and 5 discuss the results and 
analyze the performance of PINN models with different architectures 
across different conditions. Finally, Section 6 summarizes the findings 
and discusses future directions toward full-network implementations.
2 
2. Methods

2.1. The chlorine model formulation

We use PINNs as a computationally efficient implementation of 
chlorine dynamics in pipe-distribution system. We model the concen-
tration of chlorine within a pipe of the WDN via approximation of the 
1D AR PDE, in unsteady and uniform flow conditions, as given in Eq. 
(1). 
𝜕𝐶
𝜕𝑡

+ 𝑣 𝜕𝐶
𝜕𝑥

= −𝑘𝐶 (1)

subject to: 
𝐶(𝑡, 𝑥 = 0) = 𝐶𝑢𝑛(𝑡), if 𝑣 ≥ 0 (2)

𝐶(𝑡, 𝑥 = 𝐿) = 𝐶𝑑𝑛(𝑡), if 𝑣 < 0 , (3)

where:
𝐶: concentration of chlorine in (mg/L),
𝐶𝑢𝑛: concentration of chlorine at the upstream node in (mg/L), 

representing the starting point of the considered pipe (𝑥 = 0)
𝐶𝑑𝑛: concentration of chlorine at the downstream node in 

(mg/L), representing the ending point of the considered pipe (𝑥 = 𝐿)
𝑣: flow velocity (m/s),
𝑘: decay rate (per sec),
𝑥: spatial coordinate (m),
𝑡: temporal coordinate (sec).

𝐶(𝑡, 𝑥 = 0) and 𝐶(𝑡, 𝑥 = 𝐿), for all 𝑡 ∈ [𝑡0, 𝑡0+𝑇 ], define the boundary 
conditions (BCs), as they constrain the PDE to the spatial boundaries 
𝑥 = 0 and 𝑥 = 𝐿. Similarly, 𝐶(𝑡 = 𝑡0, 𝑥) for all 𝑥 ∈ [0, 𝐿] represents 
the initial conditions (ICs), constraining the PDE at the initial time 
step. Here, 𝑇  denotes the time period of the given PDE (or simulation 
horizon), while 𝐿 represents the total length of the considered pipe in 
the network.

While solving this PDE, we assume that the velocity 𝑣 is derived 
from the hydraulic simulation solution, i.e., it is a function of other 
parameters: the diameter 𝐷, the length of the pipe 𝐿, and the roughness 
coefficient 𝐶𝐻𝑊 . But the biggest effect on the flow velocity is the 
changing demand at the nodes, situated on the edges of the presented 
pipe. Therefore, while training the PINN on varying velocity, we can 
assume it is also equivalent to training over changing parameters that 
determine the velocity, i.e. 𝐿,𝐷, 𝐶𝐻𝑊 , representing pipes with different 
lengths, diameters, and roughness coefficients.

Finally, we justify our simplified AR PDE replacing the full ADR PDE 
as follows. In turbulent pipe flow conditions typical of WDSs, advection 
and turbulent mixing dominate solute transport, while molecular dif-
fusion and longitudinal dispersion are negligible. The high Reynolds 
numbers produce strong velocity fluctuations that rapidly homoge-
nize concentrations across the pipe, effectively eliminating diffusive 
gradients. Consequently, the AR formulation (i.e., plug flow assump-
tion) widely adopted in models such as EPANET provides an accurate 
and computationally efficient representation of water quality dynamics 
without the need for explicit diffusion terms.

2.2. PINN prediction task and loss functions

The main motivation for implementing PINNs for chlorine modeling 
in pipe-distribution system is to improve the computational efficiency 
of chlorine concentration prediction. Unlike traditional machine learn-
ing, which relies purely on knowledge learned from the training data, 
PINNs integrate additional prior domain knowledge or constraints over 
the outputs.

Loss is the objective we decide upon to optimize a given Neural 
Network (NN), to approximate the best prediction of the NN’s output. 
The loss should be such that it allows to generalize to unseen data. 
While most commonly in ML a data loss prediction is used, which min-
imizes the difference between observations (i.e., measurements) and 



S. Komarovsky et al.

 

Water Research X 30 (2026) 100471 
the corresponding predictions, then in PINN we also include knowledge 
about the physics and dynamics of the system. Specifically how input 
coordinates influence the output variables. Full knowledge includes 
the dynamics equation (ordinal differential equation or PDE) and the 
relevant conditions to represent a specific solution for the dynamics, 
i.e., initial and boundary conditions.

EPANET is used as our reference (high-fidelity) model to generate 
training data representing reality, since its outcomes have been already 
thoroughly compared to real measured data in various studies (Junaid 
and Izinyon, 2022; Kowalska et al., 2018). Next, we train a PINN model 
to approximate the generated data through minimization of a weighted 
combination of three losses: d=data loss (𝐿1 or 𝐿𝑑𝑎𝑡𝑎), p=PDE loss (𝐿2
or 𝐿𝑃𝐷𝐸), and c=condition loss (𝐿3 or 𝐿𝐵𝐶&𝐼𝐶 ), as formulated in Eq. 
(4). 

𝐿 =
3
∑

𝑖=1
𝑤𝑖𝐿𝑖 , (4)

 where 𝐿1 = 𝐿𝑑𝑎𝑡𝑎 =
1
𝑁

𝑁
∑

𝑖=1
(𝐶(𝑡𝑖, 𝑥𝑖) − 𝐶̂(𝑡𝑖, 𝑥𝑖))2,

𝐿2 = 𝐿𝑃𝐷𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

𝜕𝐶̂
𝜕𝑡

|𝑡𝑖 + 𝑣 𝜕𝐶̂
𝜕𝑥

|𝑥𝑖 + 𝑘𝐶̂(𝑡𝑖, 𝑥𝑖)
)

2, and

𝐿3 = 𝐿𝐵𝐶&𝐼𝐶 = 1
𝑁

𝑁
∑

𝑖=1

(

𝐶(𝑡𝑖 = 0, 𝑥𝑖) − 𝐶̂(𝑡𝑖 = 0, 𝑥𝑖)
) 2

+ 1
𝑁

𝑁
∑

𝑖=1

(

𝐶(𝑡𝑖, 𝑥𝑖 = 0) − 𝐶̂(𝑡𝑖, 𝑥𝑖 = 0)
) 2

+ 1
𝑁

𝑁
∑

𝑖=1

(

𝐶(𝑡𝑖, 𝑥𝑖 = 𝐿) − 𝐶̂(𝑡𝑖, 𝑥𝑖 = 𝐿)
) 2

with 𝑁 being the number of data points, 
𝐶 being the true value of chlorine concentration, and 
𝐶̂ being the predicted value.
The data loss (𝐿𝑑𝑎𝑡𝑎) is defined as the mean squared error be-

tween predicted and observed chlorine concentrations, ensuring ac-
curate data-driven fitting in line with standard supervised learning 
practices.

The physics loss (𝐿𝑃𝐷𝐸) embeds the known advection–reaction 
dynamics governing chlorine transport and decay over time, enforcing 
that the model predictions comply with the underlying physical laws.

The constraint loss (𝐿𝐵𝐶&𝐼𝐶 ) ensures adherence to the initial and 
boundary conditions (ICs and BCs), enabling the network to produce 
solutions consistent with the PDE boundaries.

During early experimentation, particularly when applying the model
to more complex scenarios (see Section 4), training that included all 
loss components (data + physics + continuity) unexpectedly produced 
inferior results compared to using data loss alone. This observation 
indicated inconsistencies within the physics and constraint terms. Con-
sequently, the model was employed inversely – as a physics-informed 
diagnostic tool – to identify and correct errors within the PDE formula-
tion. Details of this inverse PINN-based correction are provided in the 
appendix in Appendix  A.1.

2.3. PINN models

Several deep neural network (DNN) architectures were explored 
in this research to comparatively analyze their performance. More 
specifically, we comparatively analyzed three different architectures 
with increasing complexity.

Initially, we employed a basic PINN setup (see Fig.  1(a)). However, 
after analyzing different possible boundary and initial conditions, we 
determined that the model should account for varying PDEs rather than 
a single PDE throughout the simulation. To address this, we adjusted 
the time coordinate from 𝑡 to relative time 𝑡 − 𝑡0 and incorporated IC 
and BC as additional inputs, yielding the improved model in Fig.  1(b).
3 
Subsequently, we further refined the model by integrating prior 
knowledge through inductive biases. This was achieved by introducing 
separate encoder DNNs for the ICs and BCs, as depicted in Fig.  1(c).

To evaluate the effectiveness of the proposed framework, we de-
signed and comparatively tested three neural network architectures as 
part of the three above models. The three NN architectures capture 
different learning paradigms:

• Fully Connected Neural Network (DNN): a two-layer feed-
forward network with 32 neurons per hidden layer and ReLU 
(Rectified Linear Unit) activation, followed by a Tanh-activated 
output neuron. This baseline configuration provides a deter-
ministic, nonlinear function approximator for mapping spatial–
temporal inputs to chlorine concentrations.

• Transformer Network: a sequence-oriented model beginning 
with a linear embedding layer (32 neurons) that projects the input 
vector into a latent representation, followed by two transformer 
encoder blocks with 4 attention heads, 0.1 dropout, and 32 
hidden neurons. The output layer applies a Tanh activation to 
produce a one-dimensional concentration estimate. This design 
allows spatial–temporal dependencies to be captured effectively.

• Hybrid Network: a composite architecture integrating embed-
ding sub-networks for IC and BC representations. The IC embed-
ding consists of three layers with [32, 16, 16] neurons, and the 
BC embedding of two layers with [16, 16] neurons, all using Tanh 
activations. These learned embeddings capture context-specific 
features before being concatenated with the remaining input 
features and then processed through a main network, which is 
either a Transformer or a five-layer DNN with [32, 16, 16, 16, 
16] neurons and alternating ReLU and Tanh activations. A final 
linear output layer maps to the target concentration.

This comparison allows assessing the trade-offs between fully con-
nected and attention-based models, as well as the benefits of embedding 
boundary-related priors.

Model 1 and 2 use either a simple Feed-Forward Neural Network 
(FFNN) or a Transformer. The difference between Model 1 and 2 was 
only in the input dimension size, since they used different inputs. Model 
3 used a hybrid architecture, since it had also embedding layers to 
reduce the hidden features dimension for the IC and BC.

Model training followed a supervised learning framework with 80% 
of data used for training and 20% reserved for testing. The training 
utilized the Adaptive Moment Estimation (Adam) optimizer with a 
learning rate of 1 ⋅ 10−5, and a batch size of 32. Each training in-
stance corresponded to a one-minute water-quality simulation step, 
consistent with EPANET’s temporal resolution. These hyperparameters 
were selected to balance convergence stability and computational effi-
ciency across all architectures. Note that these are the best values that 
we received (for the architecture and training configuration). Many 
different values were examined during this research, via a random 
hyperparameter search method.

2.4. Evaluation metrics

We comparatively evaluate the performance of the three PINN 
models based on a set of state-of-the-art model error metrics. Since 
all experiments involve regression tasks, the Mean Square Error (MSE) 
serves as the primary loss function, defined in Eq.  (5): 

𝐿 = 1
𝑛 ⋅ 𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

(

𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗
)2 , (5)

where 𝐶 and 𝐶̂ denote the actual and predicted values, respectively, 
while 𝑛 and 𝑚 represent the number of features and samples. In our 
case, the output is a 1-dimensional concentration variable (𝑚 = 1). 
More generally, 𝑚 may have higher dimensions, which could be utilized 
for cases with multiple substances.
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(a) Model 1

  
(b) Model 2

  
(c) Model 3

 

Fig. 1. Different PINN models that were comparatively analyzed throughout this research.
Fig. 2. The 1-pipe water distribution network used in the study.
Additional evaluation metrics include Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error 
(RMSE), as expressed in Eq.  (6): 

MAE = 1
𝑛 ⋅ 𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
|𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗 | ,

MAPE = 1
𝑛 ⋅ 𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

|𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗 |

𝐶𝑖,𝑗
,

RMSE =

√

√

√

√

1
𝑛 ⋅ 𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

(

𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗
)2 .

(6)

MSE is applied both during model training as a loss function, and 
during the testing phase for final model assessment. The additional 
metrics in Eq.  (6) are used to assess performance on the test set.

Finally, the units of the different metrics are as following: MSE 
(mg2∕L2), MAE (mg∕L), MAPE (unitless), and RMSE (mg∕L).

3. Experimental settings

For the simulations required to generate training data, we utilize 
the EPANET simulation tool. Specifically, hydraulic and water quality 
simulations are performed using the Water Network Tool for Resiliency 
(WNTR) Python package, which is built on EPANET version 2.2 (Klise 
et al., 2017; Rossman et al., 2020).

The PINN models were implemented using the Pytorch framework 
in Python version 3.11, via regular NNs, including the transformer 
package.

The water distribution network considered as a testing case in this 
research, as shown in Fig.  2, consists of two tanks connected by a water 
pipe.

In the corresponding EPANET model, this 1-pipe water distribution 
network is discretized by implementing 20 virtual, non-consuming 
nodes, separated by equally 50 meter long pipes, designed to store 
chemical concentration data throughout all quality steps in the sim-
ulation.

The EPANET simulation settings adopted for data generation con-
sisted of the following temporal resolutions: hydraulic is set at 1-hour 
step, demand pattern is set at a 1-minute step, and the minimal possible 
water quality simulation step is set at 1 min. The weights of the loss 
function in Eq.  (4) were set to 𝑤 = 𝑤 = 𝑤 = 100.
1 2 3

4 
Fig.  3 illustrates the full dataset generated by EPANET for a simu-
lation with a time horizon of 8-hours. As illustrated in the figure, the 
generated dataset consists of 𝐶(𝑡, 𝑥) for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ] and for all 
𝑥 ∈ [0, 𝐿]. Unlike traditional PINN with a single IC and BC throughout 
the whole simulation, we assume a varying IC or BCs at every hydraulic 
step, which then remain constant during the single step simulation.

Following data generation, we trained the PINN models described in 
the previous section considering the following different scenarios. The 
rationale behind this sequence of scenarios was to construct the PINN 
from simple to complex cases, to handle errors and issues encountered 
while increasing complexity at each new case:

1. Case 1: The velocity and BCs remain constant throughout the 
entire 3-day simulation. The decay rate is set to 𝑘 = 0. Model 1 
is used.

2. Case 2: The velocity and BC are fixed for the entire 8-day 
simulation, with a decay rate of 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. Model 1 is 
used.

3. Case 3: The velocity remains constant, while the BC changes 
every hour (at each hydraulic step) but remains fixed within that 
hour. The simulation runs for 10 days with 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. 
Model 2 is used.

4. Case 4: Both velocity and BC vary at each hydraulic step (1 h) 
but remain constant during all quality steps within the hydraulic 
step. The simulation duration is 3 days, with 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. 
Model 3 is used.

5. Case 5: The velocity changes at each hydraulic step (1 h), while 
the BC varies at every water quality time step (1 min) according 
to a predefined function of time. The simulation runs for 3 days 
with 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. Model 3 is used.
6. Case 6: The velocity changes at each hydraulic step (1 h), while 
the BC fluctuates at each quality time step (1 min) within a 
uniformly random range of 90% to 110% around the initial value 
at the start of the hydraulic step. The simulation duration is 3 
days, with 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. Model 3 is used.

The different cases require different PDE assumptions. The simple 
cases 1 and 2 assume that the PDE and its constraints (conditions) 
remain constant throughout the entire simulation. Conversely, this 
assumption will not hold in the more complex cases, in which either 
𝑣 or BC were not fixed. This means that whenever any part of the PDE 
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Fig. 3. Illustration of the EPANET-generated water quality dataset, with a batch of (red) points sampled from it for PINN training/testing. Each blue point 
represents a generated contaminant concentration data point, with coordinates (t,x). Samples marked in yellow correspond to the boundary conditions (x = 0) 
and (x = L). Samples marked in pink represent the data point at the beginning of each simulated hour.
Legend: A grid of 𝐶(𝑡, 𝑥) for all 𝑡 ∈ [0, 8 hrs] and for all 𝑥 ∈ [0, 950m]. x: 20 nodes 50 m apart. t: 8 h simulation, hydraulic step=1hr, quality step=10min.
Every new hydraulic step/regime starts with new IC and new BC for x=0 m and x=L=950 m. Shown 4 randomly selected data points for PINN training.
For example, point 𝐶(𝑥 = 450 m, 𝑡 =1:30hrs) has IC 𝐶(𝑥, 𝑡 =1:00hrs) for all 𝑥 ∈ [0, 950m], and BC: 𝐶(𝑥 = 0 m, 𝑡 =1:30hrs) and 𝐶(𝑥 = 950 m, 𝑡 =1:30hrs). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
changes, the entire dynamics must be restarted. That is, new initial and 
boundary conditions must be set, reflecting the modifications in the 
PDE from that point onward.

In planning for case 3, a similar approach should produce a high 
loss, which forces us to explore alternative PINN models. We could 
implemented a standard fully connected neural network (FCNN) and a 
Transformer model, as depicted in Fig.  1(b). However, the input dimen-
sionality would be excessively high. Specifically, the initial condition 
(IC) input contained 𝐶(𝑡0, 𝑥) for all 𝑥 ∈ [0, 𝐿], with 20 nodes along this 
range. This mixing of inputs would yield hindered learning.

After initial evaluations, several methodological refinements were 
introduced to improve accuracy, stability, and physical consistency.

(a) Embedding-based representation of boundary conditions.
Rather than processing ICs directly as raw values, embedding 
layers were introduced to reduce their dimensionality and ex-
tract higher-level representations. This approach allowed the 
model to distinguish between IC patterns while avoiding ex-
cessive sensitivity to node-specific numerical variations. The 
resulting model, illustrated in Fig.  1(c), processes ICs and BCs 
through separate embedding networks before merging them with 
the main input stream.

(b) Continuity across PDE regimes. Because flow velocity and 
boundary conditions can vary between PDE regimes, the tran-
sitions between regimes were reformulated to ensure smooth, 
continuous changes rather than abrupt discontinuities.

(c) Correction of loss weighting. Each data point (𝑡, 𝑥) contributes 
simultaneously to all three loss components; however, IC loss is 
only relevant across different 𝑥 values, not 𝑡 values. This results 
in redundant IC losses. Given that the EPANET water quality 
simulation step is set to 1 min while each PDE regime lasts 1 h, 
IC loss is unnecessarily repeated 60 times. Similarly, BC loss is 
repeated across all 20 nodes in the pipe. To correct for this, the 
loss function was reweighted as: 
𝐿 = 𝑤1𝐿𝑑𝑎𝑡𝑎 +𝑤2𝐿𝑃𝐷𝐸 +

𝑤3
60

𝐿𝐼𝐶 +
𝑤3
20

𝐿𝐵𝐶 (7)

(d) Optimized data utilization for loss computation. While the 
data loss term requires ground-truth labels, the PDE and con-
straint losses depend only on model predictions and known 
5 
physical inputs. Therefore, the latter components were trained 
using 100% of the available data without risk of data leakage, 
maximizing the effectiveness of the physics-informed supervi-
sion. In other words, the PDE loss used 100% of the (𝑡, 𝑥) tuples 
in the full dataset of (𝑡, 𝑥, 𝐶), while the data loss used 80% as 
in original settings. BC and IC losses also used 100%, since 
we assume that both initial and boundary conditions are fully 
known.

Note that the different methodological adaptations for the different 
cases we proposed above are general. That is, they depend on the 
characteristics of ICs and BCs only. Thus, they can be applied to any 
pipe type, with our simple network as merely an example.

4. Results

This section is organized based on the complexity of the examined 
cases, beginning with simpler cases and progressing to more complex 
ones. The results provide insights into the model’s performance and 
limitations under different BCs and velocity (𝑣) configurations.

4.1. Simple cases

Initially, we examined cases with constant velocity (𝑣) and BC. 
Specifically, we set 𝐶(𝑡, 𝑥 = 0) = 0 and 𝐶(𝑡, 𝑥 = 𝐿) = 1. This 
scenario, referred to as "Case 1" assumes 𝑘 = 0, representing a simple 
spatio-temporal continuity equation. Later, in Case 2, we analyzed the 
scenario where 𝑘 > 0. For both cases, we employed the simple PINN 
model shown in Fig.  1(a).

In these simpler cases, we obtained near-perfect results with very 
low test loss, as shown in Fig.  4. However, when either 𝑣 or BC 
were not fixed, the performance deteriorated significantly, leading to a 
poor match between the EPANET true concentration and the predicted 
concentration by PINN.

This decrease in performance was due to incorrect assumptions 
regarding the PDE. While in the simple case we assumed a fixed PDE, 
the changing cases assumed a changing PDE. Consequently, the original 
PINN model in Fig.  1(a) was replaced with a model that accounts for 
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Fig. 4. Comparison between true (EPANET quality simulation) versus predicted (PINNs) concentration along the pipe (x) in Case 1 at various time steps.
Note that because these are polynomial trendlines, some data points may appear as negative values.
Fig. 5. Comparison between true concentrations from EPANET quality simulations and predicted concentrations from PINNs along the pipe (x) at various time 
steps in Case 3.
ICs, BCs, and elapsed time since the most recent PDE change, as shown 
in Fig.  1(b).

Alongside using a simple fully connected neural network (FCNN) 
for PINN, we also explored a Transformer-based model. By tuning key 
parameters such as the number of encoding layers, feature dimensions, 
and attention heads, we mitigated overfitting and achieved improved 
results compared to the FCNN.

4.2. Changing velocity and boundary condition cases

Next, we examined Case 3, where velocity remained fixed while BCs 
changed over a 10-day simulation period, with a decay coefficient of 
𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. All loss components (data, PDE, and constraint) were 
included after training for 1000 epochs. The best test loss (data loss 
only) was 0.003, as shown in Fig.  5.

As planned in the methodology, case 3 should use a more appro-
priate PINN model. Indeed, implementing the model from the simpler 
cases yielded a high loss. Subsequently, we used the model depicted in 
Fig.  1(c). However, even with this adjustment, many results showed 
that including PDE and constraint losses did not always improve per-
formance. In some cases, data loss alone performed better than when 
additional loss terms (PDE and conditions) were included.

To handle this issue, we included continuous transitions where the 
velocity or BC are changed in the PDE, and weight correction of the 
three loss components, see Eq.  (7).
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Table 1
Comparison of different problem complexity cases.
 Case Velocity (𝑣)

(m/s)
BC Simulation

(days)
𝑘
(1/(3600*24) 1/s)

Test Loss
(mg2∕L2)

 

 1 Fixed Fixed 3 0 0.0005  
 2 Fixed Fixed 8 −10 0.0001  
 3 Fixed Changing 10 −10 0.0013  
 4 Changing Changing 3 −10 0.0023  
Legend: BC = boundary conditions, 𝑘 = decay coefficient , test loss = at final epoch 
of training.

These corrections, along with using the exact number of repetitions 
for BC and IC, improved the model performance.

Since computational limitations affected training duration, we ran 
Case 4 (changing velocity and BCs) for 2000 epochs, which is much 
less epochs compared to the previous simpler cases.

We also refined our data usage for different loss components, as 
planned in the methodology. That is, training the PDE and constraint 
losses using 100% of the data.

4.2.1. Summary of cases
Table  1 summarizes different simulation cases and their test losses.
However, Case 4 was not the most complex scenario, as BCs only 

changed between PDE transitions, remaining constant within each PDE 
period (1 h or 60 water quality simulation steps).
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Table 2
Comparison of test losses for varying BCs under different training losses.
 Case Data Loss (d)

(mg2∕L2)
Data + PDE (d+p) 
(mg2∕L2)

Data + PDE + Conditions 
(d+p+c)
(mg2∕L2)

 

 5 0.0157 0.0155 0.0116  
 6 0.0063 0.0055 0.0055  

Finally, the comparison among the different cases was done for fixed 
parameters. However, we present in Table  1 additional simulations, 
where the number of days is different, to emphasize that the perfor-
mance was almost similar. Meaning that most of the effect is due to 
velocity and BC configuration, and is insignificant for the simulation 
duration.

4.2.2. More complex cases
In the more cases we tested, BCs varied at each water quality 

simulation step. First, in Case 5, BCs followed a functional relationship: 
𝐶(𝑡, 𝑥 = 0) = 𝐶1(𝑡) and 𝐶(𝑡, 𝑥 = 𝐿) = 𝐶2(𝑡) for all 𝑡. This setup performed 
poorly, i.e., the data losses presented in Table  2 are worse by an order 
of magnitude compared to previous less complex cases.

Next, in Case 6, BCs fluctuated randomly around their initial values:
𝐶(𝑡, 𝑥 = 0) ∈ [0.9, 1.1] ⋅ 𝐶(𝑡0, 𝑥 = 0) and 𝐶(𝑡, 𝑥 = 𝐿) ∈ [0.9, 1.1] ⋅

𝐶(𝑡0, 𝑥 = 𝐿) for all 𝑡. This case represented system robustness to 
uniformly distributed noise and yielded better results.

Table  2 compares test losses across these cases with different loss 
functions.

Results indicate that including PDE and conditions losses gener-
ally improved performance, though the effect of conditions loss var-
ied across experiments. Multiple runs were conducted to account for 
stochastic variations in neural network initialization and optimization.

Additional analyses, specifically the scalability assessment and the 
computation time comparison between EPANET and the PINN model, 
while secondary to the primary objectives of this study, are provided 
in Appendix in Appendix  A.2.

5. Discussion

The goal of this paper was to investigate chlorine modeling with 
PINN in the simple 1-pipe water distribution network depicted in Fig. 
2.

Our methodology involved starting with the simplest cases and 
gradually increasing complexity while addressing challenges encoun-
tered along the way. Several issues arose during the research, as 
described in Section 4.

One key challenge was constructing the most suitable DNN model 
for our specific task. This is a crucial step in deep learning design, 
where selecting an appropriate architecture enables effective data pro-
cessing and minimizes loss on unseen (test) data.

Understanding the nature of the data is essential for this step. 
For example, convolutional neural networks (CNNs) are well-suited 
for image processing, recurrent neural networks (RNNs) for text, and 
graph neural networks (GNNs) for graph-structured data. Additionally, 
considerations such as parameter sharing or separation play a role in 
DNN design.

In our case, we reduced the input data size of the IC input to 
mitigate the curse of dimensionality, a common deep learning challenge 
where higher-dimensional data requires a significantly larger dataset to 
achieve comparable performance. To address this, we incorporated ad-
ditional encoding or embedding layers to process IC and BC separately. 
This adjustment led to improved results.

Another key observation was the importance of data cleaning and 
monitoring. Neglecting these aspects can result in poor performance, 
inconsistencies, or illogical outcomes.

During our study, we encountered several such scenarios:
7 
Table 3
Performance metrics for the runs in Fig. 6.
 Case MAE (mg∕L) MAPE (unitless) RMSE (mg∕L) Test Loss (mg2∕L2) 
 24 h d+p+c 0.05866 823.2 0.08829 0.007785  
 24 h d 0.06111 517 0.08995 0.008084  
 72 h d+p+c 0.0568 29876 0.08625 0.007438  
 72 h d 0.06445 47941 0.09514 0.009051  
 240 h d+p+c 0.04404 5.62 ⋅ 1011 0.0692 0.004789  
 240 h d 0.05095 3.61 ⋅ 109 0.08028 0.006446  

Table 4
Comparison of running time of different cases in test time.
 Case Simulation (days) Running time PINN (s) Running time EPANET (s) 
 1 1 0.3 0.17  
 2 3 0.77 0.48  
 3 10 1.59 1.63  
Conditions: CPU, training data size = 80%, testing data size = 20%, quality step = 
1 min.

• Excessively high test loss.
• Cases where training with only the data loss (d loss) outper-
formed training with data, physics, and consistency losses (d+p+c 
losses). This suggests that incorporating system dynamics not only 
failed to improve training but actually worsened it, indicating a 
computational error.

• Incorrectly weighting different loss components. Specifically, mul-
tiple occurrences of physics (p) and conditions (c) losses led to an 
imbalanced total loss, distorting training effectiveness.

Ultimately, after addressing these issues, our experiments confirmed 
the value of PINNs over standard data-driven models. By enforcing 
system dynamics during training, PINNs improved predictions both on 
the training set and, more importantly, on the test set.

6. Conclusion

This study explored the development of a surrogate model based on 
PINNs for chlorine modeling in pipe-distribution system, demonstrating 
its capability to approximate numerical simulations obtained with tra-
ditional hydraulic and water quality modeling effectively. Several key 
conclusions emerge from our analysis.

First, PINNs consistently outperformed standard data-only neural 
networks, highlighting the value of incorporating physical knowledge 
into the learning process via the loss function. However, this advantage 
relies heavily on the accurate formulation of the governing PDEs. Any 
misrepresentation in the physical process may misguide the model 
during training. Training with only the data loss versus combining 
data, physics, and constraint losses resulted in notable performance 
differences.

Training performance was also found sensitive to the relative weights
used to balance the different components of the loss function. Addition-
ally, careful data cleaning and monitoring were shown to significantly 
affect predictive accuracy.

The study further reveals that training outcomes are sensitive to 
stochastic or design factors such as neural network weight initializa-
tion, emphasizing the need to account for variability across different 
training configurations. Moreover, increasing the size of the training 
dataset improved generalization and reduced test errors. 

This study focused on a single-pipe experiment as an initial step 
toward exploring the applicability of PINNs for water quality modeling. 
This controlled setup provided the foundation for understanding the 
model’s behavior and validating its core mechanisms before extending 
the approach to a full WDS.

Future research should build on these findings by developing adap-
tive loss weighting strategies, hybrid architectures that integrate PINNs 
with traditional numerical solvers, and incorporating real-world sensor 
data to enhance model robustness and applicability in practical WDS 
scenarios.
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Appendix

A.1. Correcting the PDE formulation

After examining cases 1 and 2, see Section 4.1, we observed unsat-
isfactory results in the more complex cases in this research.

We figured out that the problem was in our PDE. It was incorrect.
Subsequently, after multiple trials, we decided to utilize the PINN 

for an inverse problem or system identification task. Unlike standard 
prediction tasks, this approach focuses on discovering the governing 
PDE that best describes the system. In general, this involves solving for 
  such that  (𝑡, 𝑥, 𝑣) = 0, where   represents a function incorporat-
ing relevant coordinates and parameters. In our case, these are 𝑡, 𝑥, and 
velocity 𝑣.

More specifically, we assumed the overall PDE structure was correct 
but were uncertain about certain internal relationships. To address this, 
we introduced learnable parameters into the original PDE (Eq.  (1)) 
and estimated them using data from EPANET simulations. In other 
words, the problem was in our suspicion about misalignment between 
the EPANET’s model (which we assumed to be correct) and our PDE 
formulation. Thus our goal was to fix our PDE according to EPANET. 
The modified PDE with learnable parameters is given in Eq.  (8): 
𝜕𝐶
𝜕𝑡

+ 𝑣 ⋅ 𝑝1 ⋅
𝜕𝐶
𝜕𝑥

= −𝑘 ⋅ 𝑝2 ⋅ 𝐶 (8)

After sufficient training, the best-fit parameters obtained were 𝑝1 ≈
0.98 and 𝑝2 ≈ −0.67. We then returned to our original prediction task, 
setting 𝑝1 = 1 and evaluating the performance for both 𝑝2 = −0.5 and 
𝑝2 = −1. The case with 𝑝2 = −1 performed significantly better than 
𝑝2 = −0.5, leading us to conclude that our original PDE was correct but 
had an incorrect sign for the 𝑘 term.

Further review of the EPANET documentation confirmed that the 
PDE used in EPANET for solving the chlorine model was similar to ours 
(Eq.  (1)), except with an opposite sign for the 𝑘 term. That is, EPANET 
employs: 
𝜕𝐶
𝜕𝑡

+ 𝑣 𝜕𝐶
𝜕𝑥

= +𝑘𝐶 (9)

This discovery validated our corrected PDE formulation and im-
proved model accuracy.
8 
A.2. Scalability analysis

In this section, we examine how model performance depends on the 
size of the training dataset, focusing on the most complex scenario, case 
6.

The results are summarized in Fig.  6, which compares test losses 
during training across different dataset sizes and training loss configu-
rations. Additionally, Table  1 presents the best performance measures 
for each data scale and loss setting.

As shown in Fig.  6 and Table  3, increasing the training dataset 
size from 24 h to 240 h significantly reduced test loss (from 0.0078 
to 0.0048). Other performance metrics also improved, emphasizing the 
importance of sufficient training data for PINNs.

Additionally, comparing all cases from the simplest to the most 
complex, we observe from Tables  1 and 2 that more complex scenarios 
result in higher test losses. This suggests that the model struggles to 
generalize effectively when dealing with increased complexity in the 
problem formulation.

Finally, we report a comparison in terms of computational time 
required by the PINN model versus the EPANET (Physics-based) model, 
in testing or inference, i.e. while using it in practice. See Table  4 
summarizes different simulation cases and their total running time.

The computational times reported here are based on the perfor-
mance of a workstation with 12th Gen Intel(R) Core(TM) i3-12100 
(3.30 GHz) CPU, and 32 GB of RAM.

Note that this comparison may suggest that PINN is not significantly 
improve the running time, hence might not be a suitable surrogate 
model replacing EPANET. However, we need to consider several points 
that may give an advantage to PINNs over EPANET:

1. Processing unit: In our case we used CPU to train and test 
our PINN. As it well known, GPU are preferred in such cases, 
since they are much more efficient and faster in parallel com-
puting and matrix multiplication. EPANET would not benefit 
from it, but in larger models or data GPU would accelerate PINN 
substantially.

2. Network size: The network size affects EPANET computation 
time, and PINN training time. However, it should not signifi-
cantly affect PINN’s inference time (only within ICs as inputs). 
We used a tiny network. Hence, a bigger network would increase 
the gap between EPANET and PINN computation time.

3. Time steps: Table  4 shows that for small simulation time EPANET
is faster in producing the full dataset. However, as the simulation 
time increases, this gap decreases and at some point even flips, 
making the PINN faster. We can assume and extrapolate that 
at much larger temporal data size (simulation horizon) PINN 
becomes significantly faster. This could be realized either by a 
larger simulation periods or by a higher time resolution (smaller 
quality times).

4. Solution technique: The EPANET solves hydraulics for the 
entire network at each hydraulic step. Then, at smaller quality 
steps, quality is solved for the entire network, i.e. 𝐶(𝑡 = 𝑡𝑖, 𝑥) for 
all 𝑥 ∈ [0, 𝐿] at time step 𝑡 = 𝑡𝑖. Eventually, the simulation pro-
ceed sequentially, solving for all quality steps, with intermediate 
hydraulic solutions. Differently, PINN computes 𝐶(𝑡 = 𝑡𝑖, 𝑥 = 𝑥𝑖)
directly. It skips the need to solve hydraulics or quality for the 
entire network, and more importantly, it avoids the necessity 
to compute it sequentially, representing thus an advantage over 
traditional physical modeling.
A fair comparison of the computational requirements for 𝐶(𝑡, 𝑥)
for all 𝑥 ∈ [0, 𝐿] and for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ] is not straightforward. 
While EPANET simulates outputs sequentially, in PINN it was 
done only over the 20% of the test data. Therefore, we derived 
the total running time as the total inference time over 20% of 
the data divided by 0.2 to represent fair comparison over the 
whole data in 𝑥 and 𝑡.
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Fig. 6. Comparison of test loss across different data scales. Each dataset size includes results for both d+p+c training and d-only training.
However, as explained above, PINN can compute 𝐶(𝑡 = 𝑡𝑖, 𝑥 = 𝑥𝑖)
pointwise. Either for specific (𝑡𝑖, 𝑥𝑖) or a batch of those, see 
e.g. Fig.  3. In such cases the PINN would be greatly faster, 
while EPANET will still have the same computation time, since 
it has to account for all possible 𝑥 ∈ [0, 𝐿] and for all possible 
𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ].

Data availability

All data, models, and code that support the findings of this study 
are available from the corresponding author upon reasonable request.
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