
C
m
S
A
a

b

c

d

e

A

K
P
D
W
W

1

u
h
2
t
g
t
e
c
s
f
d

a

h
R

Water Research X 30 (2026) 100471

A
2

Contents lists available at ScienceDirect

Water Research X

journal homepage: www.elsevier.com/locate/wroa

omparing different Physics-Informed Neural Network models for chlorine

odeling in EPANET under varying initial and boundary conditions
himon Komarovsky a ,∗, Raghad Shamaly a , Gopinathan R. Abhijith b,c,
ndrea Cominola d,e , Avi Ostfeld a
Faculty of Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
Kotak School of Sustainability, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
Chair of Smart Water Networks, Technische Universität Berlin, Berlin, 10623, Germany
Einstein Center Digital Future, Berlin, 10117, Germany

 R T I C L E I N F O

eywords:
INN
ifferential equation
ater distribution systems
ater quality model

 A B S T R A C T

Accurate water quality modeling in water distribution systems (WDS) is essential for ensuring safe and reliable
drinking water. While numerical solvers such as EPANET provide robust simulations, their computational
cost increases substantially for real-time or large-scale applications, particularly when boundary and initial
conditions vary over time. Existing Physics-Informed Neural Network (PINN) approaches face limitations
in handling such changing conditions, despite their prevalence in real WDS operations. This study focuses
on enhancing the adaptability of PINNs for chlorine modeling under diverse and dynamic scenarios. The
proposed framework embeds the governing Advection–Reaction (AR) equation into a deep learning architecture
and introduces targeted modifications to the formulation of boundary and initial condition losses. Training
data are generated using EPANET simulations, and the framework is evaluated under multiple scenarios,
including constant and time-varying velocities as well as fixed and dynamic boundary and initial conditions.
Results demonstrate that a PINN model explicitly designed for boundary-condition adaptability can accurately
reproduce EPANET water quality simulations while reducing computational demands. Key factors influencing
performance, such as proper PDE specification, loss balancing, and data preprocessing, are identified. Although
the analysis is conducted on a single-pipe testbed to isolate these effects, the findings establish an essential
foundation for extending adaptive PINNs to full WDS networks. The primary contribution of this work is the
development and demonstration of a PINN architecture capable of reliably adapting to varying boundary and
initial conditions, addressing a critical gap in current PINN-based water quality modeling research.
. Introduction

Water distribution systems (WDS) are vital components of critical
rban infrastructure, ensuring a reliable supply of potable water to
ouseholds, industries, and commercial establishments (Walski et al.,
003). Modeling both the hydraulic and water quality dynamics of
hese systems is essential for effective planning and management strate-
ies aimed at optimizing operations, improving efficiency, and main-
aining regulatory water quality standards (Rossman, 2000; Giustolisi
t al., 2008). Water quality modeling, in particular, requires accurate
haracterization of the transport, mixing, and decay of chemical sub-
tances within networks (Rossman, 2000), providing essential insights
or contamination detection, water safety assessment, and real-time
ecision support (Ostfeld et al., 2008).

∗ Corresponding author.
E-mail addresses: shiman@campus.technion.ac.il (S. Komarovsky), raghad.sh@campus.technion.ac.il (R. Shamaly), abhijith@iitk.ac.in (G.R. Abhijith),

ndrea.cominola@tu-berlin.de (A. Cominola), ostfeld@cv.technion.ac.il (A. Ostfeld).

Traditionally, water quality dynamics in WDS are modeled using
advection–diffusion–reaction (ADR) equations to describe the move-
ment and decay of substances such as chlorine, chloramine, or contam-
inants (Trussell and Umphres, 1978). These processes depend strongly
on boundary and initial conditions, which vary with operational states,
demand fluctuations, water source changes, valve operations, and con-
tamination events. As a result, numerical simulations must often be
recomputed for each change in hydraulic or chemical conditions, lead-
ing to substantial computational burdens for large networks, real-time
applications, or repeated simulation tasks.

EPANET, an open-source software developed by the U.S. Environ-
mental Protection Agency (EPA), one of the most widely used tools
ttps://doi.org/10.1016/j.wroa.2025.100471
eceived 2 October 2025; Received in revised form 1 December 2025; Accepted 13
vailable online 22 December 2025
589-9147/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access a
 December 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/wroa
https://www.elsevier.com/locate/wroa
https://orcid.org/0000-0002-9036-0282
https://orcid.org/0009-0000-9025-6832
https://orcid.org/0000-0002-4031-4704
mailto:shiman@campus.technion.ac.il
mailto:raghad.sh@campus.technion.ac.il
mailto:abhijith@iitk.ac.in
mailto:andrea.cominola@tu-berlin.de
mailto:ostfeld@cv.technion.ac.il
https://doi.org/10.1016/j.wroa.2025.100471
https://doi.org/10.1016/j.wroa.2025.100471
http://creativecommons.org/licenses/by/4.0/

S. Komarovsky et al. Water Research X 30 (2026) 100471
for WDS simulation (Rossman et al., 2020), accurately handles these
dynamics but inherits the computational expense inherent to traditional
numerical solvers. Recent studies highlight how these costs grow when
boundary and initial conditions are rapidly changing, exactly when fast
simulation is most critical (Klise et al., 2017).

To alleviate these limitations, data-driven machine-learning (ML)
based surrogate models have been explored for WDS analysis (Shaw
et al., 2017). Among these approaches, Physics-Informed Neural Net-
works (PINNs) have emerged as particularly promising due to their
ability to incorporate governing physical laws directly into the learning
process (Raissi et al., 2019). Specifically, PINNs are neural networks
that leverage deep learning architectures to solve supervised learning
tasks while embedding nonlinear physical laws, such as governing
partial differential equations (PDEs), directly into the loss function.
PINNs have shown strong potential as fast, physically consistent sur-
rogate models for a variety of engineering applications (Karniadakis
et al., 2021), and initial studies have demonstrated their applicability
to WDS hydraulics (Ashraf et al., 2024). However, a major barrier
remains largely unaddressed: standard PINN formulations struggle to
adapt when boundary and initial conditions change, even though such
changes are pervasive in realistic WDS operations.

Most existing PINN implementations assume fixed or simple bound-
ary conditions, limiting their ability to generalize across different sce-
narios or to serve as flexible real-time surrogates. In the context of
water quality modeling, where velocities, source concentrations, or
contamination inputs may vary dynamically, this lack of adaptability
becomes a central challenge. Addressing it is essential for develop-
ing PINN-based surrogates that can replace EPANET simulations in
operational or scenario-based analyses.

In this study, we address this gap by developing and analyzing
PINN architectures designed explicitly to adapt to diverse and changing
boundary and initial conditions for chlorine transport in pipe systems.
Our framework embeds the Advection–Reaction (AR) equation within
a PINN structure and evaluates how architectural choices and loss
function formulations influence the model’s ability to generalize across
fundamentally different PDE boundary regimes. We focus on a con-
trolled single-pipe testbed to isolate, study, and compare these effects
under (i) constant vs. time-varying velocities, (ii) fixed vs. dynamic
concentration boundary conditions, and (iii) varying initial conditions.

In the initial development proposed in this study, our training
dataset consists of numerical solutions derived from EPANET, but
future implementations will integrate sensor-based real-time measure-
ments.

The PINN takes the spatio-temporal coordinates and flow veloc-
ity (𝑡, 𝑥, 𝑣) as input and predicts chlorine concentration 𝐶(𝑡, 𝑥, 𝑣), en-
abling it to capture the evolving transport dynamics. Although prior
work has proposed conceptual formulations for PINNs in WDS appli-
cations (Daniel et al., 2024), practical investigations of adaptability to
boundary and initial conditions remain limited. This study provides a
detailed implementation, systematic evaluation, and discussion of the
model behaviors that affect such adaptability.

The main contribution of this work is a comparative analysis of
PINN model variations specifically aimed at improving adaptability to
changing PDE boundary and initial conditions, addressing a critical
requirement for deploying PINN-based surrogates in realistic WDS
applications.

The remainder of this paper is organized as follows. Section 2
describes the methods, including the formulation of the chlorine model
and the PINN framework. Section 3 outlines the experimental settings
and simulation scenarios. Sections 4 and 5 discuss the results and
analyze the performance of PINN models with different architectures
across different conditions. Finally, Section 6 summarizes the findings
and discusses future directions toward full-network implementations.
2
2. Methods

2.1. The chlorine model formulation

We use PINNs as a computationally efficient implementation of
chlorine dynamics in pipe-distribution system. We model the concen-
tration of chlorine within a pipe of the WDN via approximation of the
1D AR PDE, in unsteady and uniform flow conditions, as given in Eq.
(1).
𝜕𝐶
𝜕𝑡

+ 𝑣 𝜕𝐶
𝜕𝑥

= −𝑘𝐶 (1)

subject to:
𝐶(𝑡, 𝑥 = 0) = 𝐶𝑢𝑛(𝑡), if 𝑣 ≥ 0 (2)

𝐶(𝑡, 𝑥 = 𝐿) = 𝐶𝑑𝑛(𝑡), if 𝑣 < 0 , (3)

where:
𝐶: concentration of chlorine in (mg/L),
𝐶𝑢𝑛: concentration of chlorine at the upstream node in (mg/L),

representing the starting point of the considered pipe (𝑥 = 0)
𝐶𝑑𝑛: concentration of chlorine at the downstream node in

(mg/L), representing the ending point of the considered pipe (𝑥 = 𝐿)
𝑣: flow velocity (m/s),
𝑘: decay rate (per sec),
𝑥: spatial coordinate (m),
𝑡: temporal coordinate (sec).

𝐶(𝑡, 𝑥 = 0) and 𝐶(𝑡, 𝑥 = 𝐿), for all 𝑡 ∈ [𝑡0, 𝑡0+𝑇], define the boundary
conditions (BCs), as they constrain the PDE to the spatial boundaries
𝑥 = 0 and 𝑥 = 𝐿. Similarly, 𝐶(𝑡 = 𝑡0, 𝑥) for all 𝑥 ∈ [0, 𝐿] represents
the initial conditions (ICs), constraining the PDE at the initial time
step. Here, 𝑇 denotes the time period of the given PDE (or simulation
horizon), while 𝐿 represents the total length of the considered pipe in
the network.

While solving this PDE, we assume that the velocity 𝑣 is derived
from the hydraulic simulation solution, i.e., it is a function of other
parameters: the diameter 𝐷, the length of the pipe 𝐿, and the roughness
coefficient 𝐶𝐻𝑊 . But the biggest effect on the flow velocity is the
changing demand at the nodes, situated on the edges of the presented
pipe. Therefore, while training the PINN on varying velocity, we can
assume it is also equivalent to training over changing parameters that
determine the velocity, i.e. 𝐿,𝐷, 𝐶𝐻𝑊 , representing pipes with different
lengths, diameters, and roughness coefficients.

Finally, we justify our simplified AR PDE replacing the full ADR PDE
as follows. In turbulent pipe flow conditions typical of WDSs, advection
and turbulent mixing dominate solute transport, while molecular dif-
fusion and longitudinal dispersion are negligible. The high Reynolds
numbers produce strong velocity fluctuations that rapidly homoge-
nize concentrations across the pipe, effectively eliminating diffusive
gradients. Consequently, the AR formulation (i.e., plug flow assump-
tion) widely adopted in models such as EPANET provides an accurate
and computationally efficient representation of water quality dynamics
without the need for explicit diffusion terms.

2.2. PINN prediction task and loss functions

The main motivation for implementing PINNs for chlorine modeling
in pipe-distribution system is to improve the computational efficiency
of chlorine concentration prediction. Unlike traditional machine learn-
ing, which relies purely on knowledge learned from the training data,
PINNs integrate additional prior domain knowledge or constraints over
the outputs.

Loss is the objective we decide upon to optimize a given Neural
Network (NN), to approximate the best prediction of the NN’s output.
The loss should be such that it allows to generalize to unseen data.
While most commonly in ML a data loss prediction is used, which min-
imizes the difference between observations (i.e., measurements) and

S. Komarovsky et al.

Water Research X 30 (2026) 100471
the corresponding predictions, then in PINN we also include knowledge
about the physics and dynamics of the system. Specifically how input
coordinates influence the output variables. Full knowledge includes
the dynamics equation (ordinal differential equation or PDE) and the
relevant conditions to represent a specific solution for the dynamics,
i.e., initial and boundary conditions.

EPANET is used as our reference (high-fidelity) model to generate
training data representing reality, since its outcomes have been already
thoroughly compared to real measured data in various studies (Junaid
and Izinyon, 2022; Kowalska et al., 2018). Next, we train a PINN model
to approximate the generated data through minimization of a weighted
combination of three losses: d=data loss (𝐿1 or 𝐿𝑑𝑎𝑡𝑎), p=PDE loss (𝐿2
or 𝐿𝑃𝐷𝐸), and c=condition loss (𝐿3 or 𝐿𝐵𝐶&𝐼𝐶), as formulated in Eq.
(4).

𝐿 =
3
∑

𝑖=1
𝑤𝑖𝐿𝑖 , (4)

 where 𝐿1 = 𝐿𝑑𝑎𝑡𝑎 =
1
𝑁

𝑁
∑

𝑖=1
(𝐶(𝑡𝑖, 𝑥𝑖) − 𝐶̂(𝑡𝑖, 𝑥𝑖))2,

𝐿2 = 𝐿𝑃𝐷𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

𝜕𝐶̂
𝜕𝑡

|𝑡𝑖 + 𝑣 𝜕𝐶̂
𝜕𝑥

|𝑥𝑖 + 𝑘𝐶̂(𝑡𝑖, 𝑥𝑖)
)

2, and

𝐿3 = 𝐿𝐵𝐶&𝐼𝐶 = 1
𝑁

𝑁
∑

𝑖=1

(

𝐶(𝑡𝑖 = 0, 𝑥𝑖) − 𝐶̂(𝑡𝑖 = 0, 𝑥𝑖)
) 2

+ 1
𝑁

𝑁
∑

𝑖=1

(

𝐶(𝑡𝑖, 𝑥𝑖 = 0) − 𝐶̂(𝑡𝑖, 𝑥𝑖 = 0)
) 2

+ 1
𝑁

𝑁
∑

𝑖=1

(

𝐶(𝑡𝑖, 𝑥𝑖 = 𝐿) − 𝐶̂(𝑡𝑖, 𝑥𝑖 = 𝐿)
) 2

with 𝑁 being the number of data points,
𝐶 being the true value of chlorine concentration, and
𝐶̂ being the predicted value.
The data loss (𝐿𝑑𝑎𝑡𝑎) is defined as the mean squared error be-

tween predicted and observed chlorine concentrations, ensuring ac-
curate data-driven fitting in line with standard supervised learning
practices.

The physics loss (𝐿𝑃𝐷𝐸) embeds the known advection–reaction
dynamics governing chlorine transport and decay over time, enforcing
that the model predictions comply with the underlying physical laws.

The constraint loss (𝐿𝐵𝐶&𝐼𝐶) ensures adherence to the initial and
boundary conditions (ICs and BCs), enabling the network to produce
solutions consistent with the PDE boundaries.

During early experimentation, particularly when applying the model
to more complex scenarios (see Section 4), training that included all
loss components (data + physics + continuity) unexpectedly produced
inferior results compared to using data loss alone. This observation
indicated inconsistencies within the physics and constraint terms. Con-
sequently, the model was employed inversely – as a physics-informed
diagnostic tool – to identify and correct errors within the PDE formula-
tion. Details of this inverse PINN-based correction are provided in the
appendix in Appendix A.1.

2.3. PINN models

Several deep neural network (DNN) architectures were explored
in this research to comparatively analyze their performance. More
specifically, we comparatively analyzed three different architectures
with increasing complexity.

Initially, we employed a basic PINN setup (see Fig. 1(a)). However,
after analyzing different possible boundary and initial conditions, we
determined that the model should account for varying PDEs rather than
a single PDE throughout the simulation. To address this, we adjusted
the time coordinate from 𝑡 to relative time 𝑡 − 𝑡0 and incorporated IC
and BC as additional inputs, yielding the improved model in Fig. 1(b).
3
Subsequently, we further refined the model by integrating prior
knowledge through inductive biases. This was achieved by introducing
separate encoder DNNs for the ICs and BCs, as depicted in Fig. 1(c).

To evaluate the effectiveness of the proposed framework, we de-
signed and comparatively tested three neural network architectures as
part of the three above models. The three NN architectures capture
different learning paradigms:

• Fully Connected Neural Network (DNN): a two-layer feed-
forward network with 32 neurons per hidden layer and ReLU
(Rectified Linear Unit) activation, followed by a Tanh-activated
output neuron. This baseline configuration provides a deter-
ministic, nonlinear function approximator for mapping spatial–
temporal inputs to chlorine concentrations.

• Transformer Network: a sequence-oriented model beginning
with a linear embedding layer (32 neurons) that projects the input
vector into a latent representation, followed by two transformer
encoder blocks with 4 attention heads, 0.1 dropout, and 32
hidden neurons. The output layer applies a Tanh activation to
produce a one-dimensional concentration estimate. This design
allows spatial–temporal dependencies to be captured effectively.

• Hybrid Network: a composite architecture integrating embed-
ding sub-networks for IC and BC representations. The IC embed-
ding consists of three layers with [32, 16, 16] neurons, and the
BC embedding of two layers with [16, 16] neurons, all using Tanh
activations. These learned embeddings capture context-specific
features before being concatenated with the remaining input
features and then processed through a main network, which is
either a Transformer or a five-layer DNN with [32, 16, 16, 16,
16] neurons and alternating ReLU and Tanh activations. A final
linear output layer maps to the target concentration.

This comparison allows assessing the trade-offs between fully con-
nected and attention-based models, as well as the benefits of embedding
boundary-related priors.

Model 1 and 2 use either a simple Feed-Forward Neural Network
(FFNN) or a Transformer. The difference between Model 1 and 2 was
only in the input dimension size, since they used different inputs. Model
3 used a hybrid architecture, since it had also embedding layers to
reduce the hidden features dimension for the IC and BC.

Model training followed a supervised learning framework with 80%
of data used for training and 20% reserved for testing. The training
utilized the Adaptive Moment Estimation (Adam) optimizer with a
learning rate of 1 ⋅ 10−5, and a batch size of 32. Each training in-
stance corresponded to a one-minute water-quality simulation step,
consistent with EPANET’s temporal resolution. These hyperparameters
were selected to balance convergence stability and computational effi-
ciency across all architectures. Note that these are the best values that
we received (for the architecture and training configuration). Many
different values were examined during this research, via a random
hyperparameter search method.

2.4. Evaluation metrics

We comparatively evaluate the performance of the three PINN
models based on a set of state-of-the-art model error metrics. Since
all experiments involve regression tasks, the Mean Square Error (MSE)
serves as the primary loss function, defined in Eq. (5):

𝐿 = 1
𝑛 ⋅ 𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

(

𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗
)2 , (5)

where 𝐶 and 𝐶̂ denote the actual and predicted values, respectively,
while 𝑛 and 𝑚 represent the number of features and samples. In our
case, the output is a 1-dimensional concentration variable (𝑚 = 1).
More generally, 𝑚 may have higher dimensions, which could be utilized
for cases with multiple substances.

S. Komarovsky et al. Water Research X 30 (2026) 100471

(a) Model 1

(b) Model 2

(c) Model 3

Fig. 1. Different PINN models that were comparatively analyzed throughout this research.
Fig. 2. The 1-pipe water distribution network used in the study.
Additional evaluation metrics include Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error
(RMSE), as expressed in Eq. (6):

MAE = 1
𝑛 ⋅ 𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
|𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗 | ,

MAPE = 1
𝑛 ⋅ 𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

|𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗 |

𝐶𝑖,𝑗
,

RMSE =

√

√

√

√

1
𝑛 ⋅ 𝑚

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

(

𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗
)2 .

(6)

MSE is applied both during model training as a loss function, and
during the testing phase for final model assessment. The additional
metrics in Eq. (6) are used to assess performance on the test set.

Finally, the units of the different metrics are as following: MSE
(mg2∕L2), MAE (mg∕L), MAPE (unitless), and RMSE (mg∕L).

3. Experimental settings

For the simulations required to generate training data, we utilize
the EPANET simulation tool. Specifically, hydraulic and water quality
simulations are performed using the Water Network Tool for Resiliency
(WNTR) Python package, which is built on EPANET version 2.2 (Klise
et al., 2017; Rossman et al., 2020).

The PINN models were implemented using the Pytorch framework
in Python version 3.11, via regular NNs, including the transformer
package.

The water distribution network considered as a testing case in this
research, as shown in Fig. 2, consists of two tanks connected by a water
pipe.

In the corresponding EPANET model, this 1-pipe water distribution
network is discretized by implementing 20 virtual, non-consuming
nodes, separated by equally 50 meter long pipes, designed to store
chemical concentration data throughout all quality steps in the sim-
ulation.

The EPANET simulation settings adopted for data generation con-
sisted of the following temporal resolutions: hydraulic is set at 1-hour
step, demand pattern is set at a 1-minute step, and the minimal possible
water quality simulation step is set at 1 min. The weights of the loss
function in Eq. (4) were set to 𝑤 = 𝑤 = 𝑤 = 100.
1 2 3

4
Fig. 3 illustrates the full dataset generated by EPANET for a simu-
lation with a time horizon of 8-hours. As illustrated in the figure, the
generated dataset consists of 𝐶(𝑡, 𝑥) for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇] and for all
𝑥 ∈ [0, 𝐿]. Unlike traditional PINN with a single IC and BC throughout
the whole simulation, we assume a varying IC or BCs at every hydraulic
step, which then remain constant during the single step simulation.

Following data generation, we trained the PINN models described in
the previous section considering the following different scenarios. The
rationale behind this sequence of scenarios was to construct the PINN
from simple to complex cases, to handle errors and issues encountered
while increasing complexity at each new case:

1. Case 1: The velocity and BCs remain constant throughout the
entire 3-day simulation. The decay rate is set to 𝑘 = 0. Model 1
is used.

2. Case 2: The velocity and BC are fixed for the entire 8-day
simulation, with a decay rate of 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. Model 1 is
used.

3. Case 3: The velocity remains constant, while the BC changes
every hour (at each hydraulic step) but remains fixed within that
hour. The simulation runs for 10 days with 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

.
Model 2 is used.

4. Case 4: Both velocity and BC vary at each hydraulic step (1 h)
but remain constant during all quality steps within the hydraulic
step. The simulation duration is 3 days, with 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

.
Model 3 is used.

5. Case 5: The velocity changes at each hydraulic step (1 h), while
the BC varies at every water quality time step (1 min) according
to a predefined function of time. The simulation runs for 3 days
with 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. Model 3 is used.
6. Case 6: The velocity changes at each hydraulic step (1 h), while
the BC fluctuates at each quality time step (1 min) within a
uniformly random range of 90% to 110% around the initial value
at the start of the hydraulic step. The simulation duration is 3
days, with 𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. Model 3 is used.

The different cases require different PDE assumptions. The simple
cases 1 and 2 assume that the PDE and its constraints (conditions)
remain constant throughout the entire simulation. Conversely, this
assumption will not hold in the more complex cases, in which either
𝑣 or BC were not fixed. This means that whenever any part of the PDE

S. Komarovsky et al. Water Research X 30 (2026) 100471
Fig. 3. Illustration of the EPANET-generated water quality dataset, with a batch of (red) points sampled from it for PINN training/testing. Each blue point
represents a generated contaminant concentration data point, with coordinates (t,x). Samples marked in yellow correspond to the boundary conditions (x = 0)
and (x = L). Samples marked in pink represent the data point at the beginning of each simulated hour.
Legend: A grid of 𝐶(𝑡, 𝑥) for all 𝑡 ∈ [0, 8 hrs] and for all 𝑥 ∈ [0, 950m]. x: 20 nodes 50 m apart. t: 8 h simulation, hydraulic step=1hr, quality step=10min.
Every new hydraulic step/regime starts with new IC and new BC for x=0 m and x=L=950 m. Shown 4 randomly selected data points for PINN training.
For example, point 𝐶(𝑥 = 450 m, 𝑡 =1:30hrs) has IC 𝐶(𝑥, 𝑡 =1:00hrs) for all 𝑥 ∈ [0, 950m], and BC: 𝐶(𝑥 = 0 m, 𝑡 =1:30hrs) and 𝐶(𝑥 = 950 m, 𝑡 =1:30hrs). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
changes, the entire dynamics must be restarted. That is, new initial and
boundary conditions must be set, reflecting the modifications in the
PDE from that point onward.

In planning for case 3, a similar approach should produce a high
loss, which forces us to explore alternative PINN models. We could
implemented a standard fully connected neural network (FCNN) and a
Transformer model, as depicted in Fig. 1(b). However, the input dimen-
sionality would be excessively high. Specifically, the initial condition
(IC) input contained 𝐶(𝑡0, 𝑥) for all 𝑥 ∈ [0, 𝐿], with 20 nodes along this
range. This mixing of inputs would yield hindered learning.

After initial evaluations, several methodological refinements were
introduced to improve accuracy, stability, and physical consistency.

(a) Embedding-based representation of boundary conditions.
Rather than processing ICs directly as raw values, embedding
layers were introduced to reduce their dimensionality and ex-
tract higher-level representations. This approach allowed the
model to distinguish between IC patterns while avoiding ex-
cessive sensitivity to node-specific numerical variations. The
resulting model, illustrated in Fig. 1(c), processes ICs and BCs
through separate embedding networks before merging them with
the main input stream.

(b) Continuity across PDE regimes. Because flow velocity and
boundary conditions can vary between PDE regimes, the tran-
sitions between regimes were reformulated to ensure smooth,
continuous changes rather than abrupt discontinuities.

(c) Correction of loss weighting. Each data point (𝑡, 𝑥) contributes
simultaneously to all three loss components; however, IC loss is
only relevant across different 𝑥 values, not 𝑡 values. This results
in redundant IC losses. Given that the EPANET water quality
simulation step is set to 1 min while each PDE regime lasts 1 h,
IC loss is unnecessarily repeated 60 times. Similarly, BC loss is
repeated across all 20 nodes in the pipe. To correct for this, the
loss function was reweighted as:
𝐿 = 𝑤1𝐿𝑑𝑎𝑡𝑎 +𝑤2𝐿𝑃𝐷𝐸 +

𝑤3
60

𝐿𝐼𝐶 +
𝑤3
20

𝐿𝐵𝐶 (7)

(d) Optimized data utilization for loss computation. While the
data loss term requires ground-truth labels, the PDE and con-
straint losses depend only on model predictions and known
5
physical inputs. Therefore, the latter components were trained
using 100% of the available data without risk of data leakage,
maximizing the effectiveness of the physics-informed supervi-
sion. In other words, the PDE loss used 100% of the (𝑡, 𝑥) tuples
in the full dataset of (𝑡, 𝑥, 𝐶), while the data loss used 80% as
in original settings. BC and IC losses also used 100%, since
we assume that both initial and boundary conditions are fully
known.

Note that the different methodological adaptations for the different
cases we proposed above are general. That is, they depend on the
characteristics of ICs and BCs only. Thus, they can be applied to any
pipe type, with our simple network as merely an example.

4. Results

This section is organized based on the complexity of the examined
cases, beginning with simpler cases and progressing to more complex
ones. The results provide insights into the model’s performance and
limitations under different BCs and velocity (𝑣) configurations.

4.1. Simple cases

Initially, we examined cases with constant velocity (𝑣) and BC.
Specifically, we set 𝐶(𝑡, 𝑥 = 0) = 0 and 𝐶(𝑡, 𝑥 = 𝐿) = 1. This
scenario, referred to as "Case 1" assumes 𝑘 = 0, representing a simple
spatio-temporal continuity equation. Later, in Case 2, we analyzed the
scenario where 𝑘 > 0. For both cases, we employed the simple PINN
model shown in Fig. 1(a).

In these simpler cases, we obtained near-perfect results with very
low test loss, as shown in Fig. 4. However, when either 𝑣 or BC
were not fixed, the performance deteriorated significantly, leading to a
poor match between the EPANET true concentration and the predicted
concentration by PINN.

This decrease in performance was due to incorrect assumptions
regarding the PDE. While in the simple case we assumed a fixed PDE,
the changing cases assumed a changing PDE. Consequently, the original
PINN model in Fig. 1(a) was replaced with a model that accounts for

S. Komarovsky et al. Water Research X 30 (2026) 100471
Fig. 4. Comparison between true (EPANET quality simulation) versus predicted (PINNs) concentration along the pipe (x) in Case 1 at various time steps.
Note that because these are polynomial trendlines, some data points may appear as negative values.
Fig. 5. Comparison between true concentrations from EPANET quality simulations and predicted concentrations from PINNs along the pipe (x) at various time
steps in Case 3.
ICs, BCs, and elapsed time since the most recent PDE change, as shown
in Fig. 1(b).

Alongside using a simple fully connected neural network (FCNN)
for PINN, we also explored a Transformer-based model. By tuning key
parameters such as the number of encoding layers, feature dimensions,
and attention heads, we mitigated overfitting and achieved improved
results compared to the FCNN.

4.2. Changing velocity and boundary condition cases

Next, we examined Case 3, where velocity remained fixed while BCs
changed over a 10-day simulation period, with a decay coefficient of
𝑘 = − 10

24⋅3600

[

1
𝑠𝑒𝑐

]

. All loss components (data, PDE, and constraint) were
included after training for 1000 epochs. The best test loss (data loss
only) was 0.003, as shown in Fig. 5.

As planned in the methodology, case 3 should use a more appro-
priate PINN model. Indeed, implementing the model from the simpler
cases yielded a high loss. Subsequently, we used the model depicted in
Fig. 1(c). However, even with this adjustment, many results showed
that including PDE and constraint losses did not always improve per-
formance. In some cases, data loss alone performed better than when
additional loss terms (PDE and conditions) were included.

To handle this issue, we included continuous transitions where the
velocity or BC are changed in the PDE, and weight correction of the
three loss components, see Eq. (7).
6
Table 1
Comparison of different problem complexity cases.
 Case Velocity (𝑣)

(m/s)
BC Simulation

(days)
𝑘
(1/(3600*24) 1/s)

Test Loss
(mg2∕L2)

 1 Fixed Fixed 3 0 0.0005
 2 Fixed Fixed 8 −10 0.0001
 3 Fixed Changing 10 −10 0.0013
 4 Changing Changing 3 −10 0.0023
Legend: BC = boundary conditions, 𝑘 = decay coefficient , test loss = at final epoch
of training.

These corrections, along with using the exact number of repetitions
for BC and IC, improved the model performance.

Since computational limitations affected training duration, we ran
Case 4 (changing velocity and BCs) for 2000 epochs, which is much
less epochs compared to the previous simpler cases.

We also refined our data usage for different loss components, as
planned in the methodology. That is, training the PDE and constraint
losses using 100% of the data.

4.2.1. Summary of cases
Table 1 summarizes different simulation cases and their test losses.
However, Case 4 was not the most complex scenario, as BCs only

changed between PDE transitions, remaining constant within each PDE
period (1 h or 60 water quality simulation steps).

S. Komarovsky et al.

Water Research X 30 (2026) 100471
Table 2
Comparison of test losses for varying BCs under different training losses.
 Case Data Loss (d)

(mg2∕L2)
Data + PDE (d+p)
(mg2∕L2)

Data + PDE + Conditions
(d+p+c)
(mg2∕L2)

 5 0.0157 0.0155 0.0116
 6 0.0063 0.0055 0.0055

Finally, the comparison among the different cases was done for fixed
parameters. However, we present in Table 1 additional simulations,
where the number of days is different, to emphasize that the perfor-
mance was almost similar. Meaning that most of the effect is due to
velocity and BC configuration, and is insignificant for the simulation
duration.

4.2.2. More complex cases
In the more cases we tested, BCs varied at each water quality

simulation step. First, in Case 5, BCs followed a functional relationship:
𝐶(𝑡, 𝑥 = 0) = 𝐶1(𝑡) and 𝐶(𝑡, 𝑥 = 𝐿) = 𝐶2(𝑡) for all 𝑡. This setup performed
poorly, i.e., the data losses presented in Table 2 are worse by an order
of magnitude compared to previous less complex cases.

Next, in Case 6, BCs fluctuated randomly around their initial values:
𝐶(𝑡, 𝑥 = 0) ∈ [0.9, 1.1] ⋅ 𝐶(𝑡0, 𝑥 = 0) and 𝐶(𝑡, 𝑥 = 𝐿) ∈ [0.9, 1.1] ⋅

𝐶(𝑡0, 𝑥 = 𝐿) for all 𝑡. This case represented system robustness to
uniformly distributed noise and yielded better results.

Table 2 compares test losses across these cases with different loss
functions.

Results indicate that including PDE and conditions losses gener-
ally improved performance, though the effect of conditions loss var-
ied across experiments. Multiple runs were conducted to account for
stochastic variations in neural network initialization and optimization.

Additional analyses, specifically the scalability assessment and the
computation time comparison between EPANET and the PINN model,
while secondary to the primary objectives of this study, are provided
in Appendix in Appendix A.2.

5. Discussion

The goal of this paper was to investigate chlorine modeling with
PINN in the simple 1-pipe water distribution network depicted in Fig.
2.

Our methodology involved starting with the simplest cases and
gradually increasing complexity while addressing challenges encoun-
tered along the way. Several issues arose during the research, as
described in Section 4.

One key challenge was constructing the most suitable DNN model
for our specific task. This is a crucial step in deep learning design,
where selecting an appropriate architecture enables effective data pro-
cessing and minimizes loss on unseen (test) data.

Understanding the nature of the data is essential for this step.
For example, convolutional neural networks (CNNs) are well-suited
for image processing, recurrent neural networks (RNNs) for text, and
graph neural networks (GNNs) for graph-structured data. Additionally,
considerations such as parameter sharing or separation play a role in
DNN design.

In our case, we reduced the input data size of the IC input to
mitigate the curse of dimensionality, a common deep learning challenge
where higher-dimensional data requires a significantly larger dataset to
achieve comparable performance. To address this, we incorporated ad-
ditional encoding or embedding layers to process IC and BC separately.
This adjustment led to improved results.

Another key observation was the importance of data cleaning and
monitoring. Neglecting these aspects can result in poor performance,
inconsistencies, or illogical outcomes.

During our study, we encountered several such scenarios:
7
Table 3
Performance metrics for the runs in Fig. 6.
 Case MAE (mg∕L) MAPE (unitless) RMSE (mg∕L) Test Loss (mg2∕L2)
 24 h d+p+c 0.05866 823.2 0.08829 0.007785
 24 h d 0.06111 517 0.08995 0.008084
 72 h d+p+c 0.0568 29876 0.08625 0.007438
 72 h d 0.06445 47941 0.09514 0.009051
 240 h d+p+c 0.04404 5.62 ⋅ 1011 0.0692 0.004789
 240 h d 0.05095 3.61 ⋅ 109 0.08028 0.006446

Table 4
Comparison of running time of different cases in test time.
 Case Simulation (days) Running time PINN (s) Running time EPANET (s)
 1 1 0.3 0.17
 2 3 0.77 0.48
 3 10 1.59 1.63
Conditions: CPU, training data size = 80%, testing data size = 20%, quality step =
1 min.

• Excessively high test loss.
• Cases where training with only the data loss (d loss) outper-
formed training with data, physics, and consistency losses (d+p+c
losses). This suggests that incorporating system dynamics not only
failed to improve training but actually worsened it, indicating a
computational error.

• Incorrectly weighting different loss components. Specifically, mul-
tiple occurrences of physics (p) and conditions (c) losses led to an
imbalanced total loss, distorting training effectiveness.

Ultimately, after addressing these issues, our experiments confirmed
the value of PINNs over standard data-driven models. By enforcing
system dynamics during training, PINNs improved predictions both on
the training set and, more importantly, on the test set.

6. Conclusion

This study explored the development of a surrogate model based on
PINNs for chlorine modeling in pipe-distribution system, demonstrating
its capability to approximate numerical simulations obtained with tra-
ditional hydraulic and water quality modeling effectively. Several key
conclusions emerge from our analysis.

First, PINNs consistently outperformed standard data-only neural
networks, highlighting the value of incorporating physical knowledge
into the learning process via the loss function. However, this advantage
relies heavily on the accurate formulation of the governing PDEs. Any
misrepresentation in the physical process may misguide the model
during training. Training with only the data loss versus combining
data, physics, and constraint losses resulted in notable performance
differences.

Training performance was also found sensitive to the relative weights
used to balance the different components of the loss function. Addition-
ally, careful data cleaning and monitoring were shown to significantly
affect predictive accuracy.

The study further reveals that training outcomes are sensitive to
stochastic or design factors such as neural network weight initializa-
tion, emphasizing the need to account for variability across different
training configurations. Moreover, increasing the size of the training
dataset improved generalization and reduced test errors.

This study focused on a single-pipe experiment as an initial step
toward exploring the applicability of PINNs for water quality modeling.
This controlled setup provided the foundation for understanding the
model’s behavior and validating its core mechanisms before extending
the approach to a full WDS.

Future research should build on these findings by developing adap-
tive loss weighting strategies, hybrid architectures that integrate PINNs
with traditional numerical solvers, and incorporating real-world sensor
data to enhance model robustness and applicability in practical WDS
scenarios.

S. Komarovsky et al.

Water Research X 30 (2026) 100471
CRediT authorship contribution statement

Shimon Komarovsky: Writing – review & editing, Writing – orig-
inal draft, Visualization, Validation, Software, Methodology, Inves-
tigation, Formal analysis, Data curation, Conceptualization. Raghad
Shamaly: Writing – review & editing. Gopinathan R. Abhijith: Writ-
ing – review & editing, Resources, Conceptualization. Andrea Comi-
nola: Writing – review & editing, Validation, Methodology, Conceptu-
alization. Avi Ostfeld: Writing – review & editing, Validation, Super-
vision, Resources, Project administration, Funding acquisition, Concep-
tualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was supported by The Israeli Water Authority under
project number 2033800, and by the Bernard M. Gordon Center for
Systems Engineering at the Technion.

Appendix

A.1. Correcting the PDE formulation

After examining cases 1 and 2, see Section 4.1, we observed unsat-
isfactory results in the more complex cases in this research.

We figured out that the problem was in our PDE. It was incorrect.
Subsequently, after multiple trials, we decided to utilize the PINN

for an inverse problem or system identification task. Unlike standard
prediction tasks, this approach focuses on discovering the governing
PDE that best describes the system. In general, this involves solving for
 such that  (𝑡, 𝑥, 𝑣) = 0, where  represents a function incorporat-
ing relevant coordinates and parameters. In our case, these are 𝑡, 𝑥, and
velocity 𝑣.

More specifically, we assumed the overall PDE structure was correct
but were uncertain about certain internal relationships. To address this,
we introduced learnable parameters into the original PDE (Eq. (1))
and estimated them using data from EPANET simulations. In other
words, the problem was in our suspicion about misalignment between
the EPANET’s model (which we assumed to be correct) and our PDE
formulation. Thus our goal was to fix our PDE according to EPANET.
The modified PDE with learnable parameters is given in Eq. (8):
𝜕𝐶
𝜕𝑡

+ 𝑣 ⋅ 𝑝1 ⋅
𝜕𝐶
𝜕𝑥

= −𝑘 ⋅ 𝑝2 ⋅ 𝐶 (8)

After sufficient training, the best-fit parameters obtained were 𝑝1 ≈
0.98 and 𝑝2 ≈ −0.67. We then returned to our original prediction task,
setting 𝑝1 = 1 and evaluating the performance for both 𝑝2 = −0.5 and
𝑝2 = −1. The case with 𝑝2 = −1 performed significantly better than
𝑝2 = −0.5, leading us to conclude that our original PDE was correct but
had an incorrect sign for the 𝑘 term.

Further review of the EPANET documentation confirmed that the
PDE used in EPANET for solving the chlorine model was similar to ours
(Eq. (1)), except with an opposite sign for the 𝑘 term. That is, EPANET
employs:
𝜕𝐶
𝜕𝑡

+ 𝑣 𝜕𝐶
𝜕𝑥

= +𝑘𝐶 (9)

This discovery validated our corrected PDE formulation and im-
proved model accuracy.
8
A.2. Scalability analysis

In this section, we examine how model performance depends on the
size of the training dataset, focusing on the most complex scenario, case
6.

The results are summarized in Fig. 6, which compares test losses
during training across different dataset sizes and training loss configu-
rations. Additionally, Table 1 presents the best performance measures
for each data scale and loss setting.

As shown in Fig. 6 and Table 3, increasing the training dataset
size from 24 h to 240 h significantly reduced test loss (from 0.0078
to 0.0048). Other performance metrics also improved, emphasizing the
importance of sufficient training data for PINNs.

Additionally, comparing all cases from the simplest to the most
complex, we observe from Tables 1 and 2 that more complex scenarios
result in higher test losses. This suggests that the model struggles to
generalize effectively when dealing with increased complexity in the
problem formulation.

Finally, we report a comparison in terms of computational time
required by the PINN model versus the EPANET (Physics-based) model,
in testing or inference, i.e. while using it in practice. See Table 4
summarizes different simulation cases and their total running time.

The computational times reported here are based on the perfor-
mance of a workstation with 12th Gen Intel(R) Core(TM) i3-12100
(3.30 GHz) CPU, and 32 GB of RAM.

Note that this comparison may suggest that PINN is not significantly
improve the running time, hence might not be a suitable surrogate
model replacing EPANET. However, we need to consider several points
that may give an advantage to PINNs over EPANET:

1. Processing unit: In our case we used CPU to train and test
our PINN. As it well known, GPU are preferred in such cases,
since they are much more efficient and faster in parallel com-
puting and matrix multiplication. EPANET would not benefit
from it, but in larger models or data GPU would accelerate PINN
substantially.

2. Network size: The network size affects EPANET computation
time, and PINN training time. However, it should not signifi-
cantly affect PINN’s inference time (only within ICs as inputs).
We used a tiny network. Hence, a bigger network would increase
the gap between EPANET and PINN computation time.

3. Time steps: Table 4 shows that for small simulation time EPANET
is faster in producing the full dataset. However, as the simulation
time increases, this gap decreases and at some point even flips,
making the PINN faster. We can assume and extrapolate that
at much larger temporal data size (simulation horizon) PINN
becomes significantly faster. This could be realized either by a
larger simulation periods or by a higher time resolution (smaller
quality times).

4. Solution technique: The EPANET solves hydraulics for the
entire network at each hydraulic step. Then, at smaller quality
steps, quality is solved for the entire network, i.e. 𝐶(𝑡 = 𝑡𝑖, 𝑥) for
all 𝑥 ∈ [0, 𝐿] at time step 𝑡 = 𝑡𝑖. Eventually, the simulation pro-
ceed sequentially, solving for all quality steps, with intermediate
hydraulic solutions. Differently, PINN computes 𝐶(𝑡 = 𝑡𝑖, 𝑥 = 𝑥𝑖)
directly. It skips the need to solve hydraulics or quality for the
entire network, and more importantly, it avoids the necessity
to compute it sequentially, representing thus an advantage over
traditional physical modeling.
A fair comparison of the computational requirements for 𝐶(𝑡, 𝑥)
for all 𝑥 ∈ [0, 𝐿] and for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇] is not straightforward.
While EPANET simulates outputs sequentially, in PINN it was
done only over the 20% of the test data. Therefore, we derived
the total running time as the total inference time over 20% of
the data divided by 0.2 to represent fair comparison over the
whole data in 𝑥 and 𝑡.

S. Komarovsky et al. Water Research X 30 (2026) 100471
Fig. 6. Comparison of test loss across different data scales. Each dataset size includes results for both d+p+c training and d-only training.
However, as explained above, PINN can compute 𝐶(𝑡 = 𝑡𝑖, 𝑥 = 𝑥𝑖)
pointwise. Either for specific (𝑡𝑖, 𝑥𝑖) or a batch of those, see
e.g. Fig. 3. In such cases the PINN would be greatly faster,
while EPANET will still have the same computation time, since
it has to account for all possible 𝑥 ∈ [0, 𝐿] and for all possible
𝑡 ∈ [𝑡0, 𝑡0 + 𝑇].

Data availability

All data, models, and code that support the findings of this study
are available from the corresponding author upon reasonable request.

References

Ashraf, Inaam, Strotherm, Janine, Hermes, Luca, Hammer, Barbara, 2024. Physics-
informed graph neural networks for water distribution systems. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 38, (20), pp. 21905–21913.

Daniel, Ivo, Abhijith, Gopinathan R, Kutz, J Nathan, Ostfeld, Avi, Cominola, Andrea,
2024. Physics-informed machine learning for universal surrogate modelling of water
quality parameters in water distribution networks. Eng. Proc. 69 (1), 205.

Giustolisi, Orazio, Savic, Dragan, Kapelan, Zoran, 2008. Pressure-driven demand and
leakage simulation for water distribution networks. J. Hydraul. Eng. 134 (5),
626–635.

Junaid, C.T., Izinyon, O.C., 2022. Hydraulic and water quality modelling of water
distribution networks using EPANET software. Niger. J. Env. Sci. Technol. (NIJEST)
6 (1), 172–179.
9
Karniadakis, George Em, Kevrekidis, Ioannis G, Lu, Lu, Perdikaris, Paris, Wang, Sifan,
Yang, Liu, 2021. Physics-informed machine learning. Nat. Rev. Phys. 3 (6),
422–440.

Klise, Katherine A, Hart, David B, Moriarty, Dylan, Bynum, Michael L, Murray, Regan,
Burkhardt, Jonathan, Haxton, Terra, 2017. Water network tool for resilience
(WNTR) user manual. p. 50.

Kowalska, Beata, Hołota, Ewa, Kowalski, Dariusz, 2018. Simulation of chlorine concen-
tration changes in a real water supply network using epanet 2.0 and watergems
software packages. WIT Trans. Built Environ. 184, 39–48.

Ostfeld, Avi, Uber, James G, Salomons, Elad, Berry, Jonathan W, Hart, William E,
Phillips, Cindy A, Watson, Jean Paul, Dorini, Gianluca, Jonkergouw, Philip,
Kapelan, Zoran, et al., 2008. The battle of the water sensor networks (BWSN):
A design challenge for engineers and algorithms. J. Water Resour. Plan. Manag.
134 (6), 556–568.

Raissi, Maziar, Perdikaris, Paris, Karniadakis, George E., 2019. Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707.

Rossman, L.A., 2000. EPANET 2 Users Manual. US Environmental Protection Agency,
Washington, DC. Technical Report, EPA/600/R-00/057.

Rossman, Lewis A, Woo, Hyoungmin, Tryby, Michael, Shang, Feng, Janke, Robert,
Haxton, Terranna, 2020. EPANET 2.2 User Manual. p. 190.

Shaw, Amelia R, Smith Sawyer, Heather, LeBoeuf, Eugene J, McDonald, Mark P, Had-
jerioua, Boualem, 2017. Hydropower optimization using artificial neural network
surrogate models of a high-fidelity hydrodynamics and water quality model. Water
Resour. Res. 53 (11), 9444–9461.

Trussell, R. Rhodes, Umphres, Mark D., 1978. The formation of trihalomethanes. J.-Am.
Water Work. Assoc. 70 (11), 604–612.

Walski, Thomas M, Chase, Donald V, Savic, Dragan A, Grayman, Walter, Beck-
with, Stephen, Koelle, Edmundo, 2003. Advanced Water Distribution Modeling and
Management. Haestad Press.

http://refhub.elsevier.com/S2589-9147(25)00169-0/sb1
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb1
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb1
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb1
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb1
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb2
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb2
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb2
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb2
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb2
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb3
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb3
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb3
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb3
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb3
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb4
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb4
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb4
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb4
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb4
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb5
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb5
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb5
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb5
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb5
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb6
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb6
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb6
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb6
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb6
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb7
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb7
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb7
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb7
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb7
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb8
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb8
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb8
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb8
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb8
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb8
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb8
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb8
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb8
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb9
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb9
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb9
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb9
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb9
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb10
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb10
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb10
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb11
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb11
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb11
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb12
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb12
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb12
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb12
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb12
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb12
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb12
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb13
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb13
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb13
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb14
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb14
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb14
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb14
http://refhub.elsevier.com/S2589-9147(25)00169-0/sb14

	Comparing different Physics-Informed Neural Network models for chlorine modeling in EPANET under varying initial and boundary conditions
	Introduction
	Methods
	The chlorine model formulation
	PINN Prediction Task and Loss Functions
	PINN Models
	Evaluation Metrics

	Experimental settings
	Results
	Simple Cases
	Changing Velocity and Boundary Condition Cases
	Summary of Cases
	More Complex Cases

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Correcting the PDE formulation
	Scalability Analysis

	Data availability
	References

