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Abstract

This study provides a practice-oriented sensitivity analysis of DeePC for pressure manage-
ment in water distribution systems. Two public benchmark systems were used, Fossolo
(simpler) and Modena (more complex). Each run fixed a monitored node and pressure
reference, applied the same randomized identification phase followed by closed-loop con-
trol, and quantified performance by the mean absolute error (MAE) of the node pressure
relative to the reference value. To better characterize closed-loop behavior beyond MAE,
we additionally report (i) the maximum deviation from the reference over the control
window and (ii) a valve actuation effort metric, normalized to enable fair comparison
across different numbers of valves and, where relevant, different control update rates.
Motivated by the need for practical guidance on how hydraulic boundary conditions and
algorithmic choices shape DeePC performance in complex water networks, we examined
four factors: (1) placement of an additional internal PRV, supplementing the reservoir-outlet
PRVs; (2) the control time step (At); (3) a uniform reservoir-head offset (Ah); and (4) DeePC
regularization weights (A g Au, Ay) . Results show strong location sensitivity, in Fossolo,
topologically closer placements tended to lower MAE, with exceptions; the baseline MAE
with only the inlet PRV was 3.35 [m], defined as a DeePC run with no additions, no extra
valve, and no changes to reservoir head, time step, or regularization weights. Several
added-valve locations improved the MAE (i.e., reduced it) below this level, whereas poor
choices increased the error up to ~8.5 [m]. In Modena, 54 candidate pipes were tested, the
baseline MAE was 2.19 [m], and the best candidate (Pipe 312) achieved 2.02 [m], while
pipes adjacent to the monitored node did not outperform the baseline. Decreasing At across
nine tested values consistently reduced MAE, with an approximately linear trend over
the tested range, maximum deviation was unchanged (7.8 [m]) across all At cases, and
actuation effort decreased with shorter steps after normalization. Changing reservoir head
had a pronounced effect: positive offsets improved tracking toward a floor of ~0.49 [m]
around Ah = +30 [m], whereas negative offsets (below the reference) degraded perfor-
mance. Tuning of regularization weights produced a modest spread (=0.1 [m]) relative
to other factors, and the best tested combination (Ay, Ag, Au) = (102,103, 1072) yielded
MAE ~ 2.11 [m], while actuation effort was more sensitive to the regularization choice than
MAE/max deviation. We conclude that baseline system calibration, especially reservoir
heads, is essential before running DeePC to avoid biased or artificially bounded outcomes,
and that for large systems an external optimization (e.g., a genetic-algorithm search) is
advisable to identify beneficial PRV locations.

Keywords: water distribution systems (WDS); pressure management; pressure-reducing
valves (PRVs); data-enabled predictive control (DeePC); data-driven control; reservoir head;
sensitivity analysis; valve placement optimization
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1. Introduction

Urban water distribution systems (WDSs) are complex, mission-critical infrastructures
that face significant operational challenges such as high energy use, head losses, and
leakage driven by excess pressures [1]. Accordingly, optimal pressure management is a
primary means of reducing leakage and improving energy efficiency, typically implemented
via pressure-reducing valves (PRVs) placed at strategic locations to regulate pressures at
critical demand nodes [1-3]. Real-time control (RTC) is required to maintain service levels
(pressure/flow/quality) [2,4,5], yet WDS dynamics are nonlinear, high-dimensional, and
subject to parametric uncertainty (e.g., pipe roughness, time-varying demand, valve/pump
characteristics), which challenges traditional control approaches [1,4].

Model predictive control (MPC) is a common RTC strategy, but it relies on accurate
physics-based or state-space models whose development and calibration are costly and
difficult on a large scale. Against this backdrop, data-driven approaches have gained
traction. Data-Enabled Predictive Control (DeePC) is a method that offers a model-free
paradigm that uses measured input—-output sequences (historical data) to predict and
optimize control actions [4], leveraging the Fundamental Lemma [4,6] and a Hankel matrix
representation constructed from the data [7-9]. For WDS, DeePC naturally accommodates
structural uncertainty and nonlinear behavior [4].

Nevertheless, DeePC performance is sensitive to calibration choices, both algorithmic
and system-level. On the algorithmic side, the formulation employs slack variables and
regularization weights to balance tracking accuracy against robustness to noise and partial
model information, so tuning these regularization weights is therefore critical [4,7,9,10].
On the data/system side, performance depends on the size of the historical data set, the
initialization window, and the prediction horizon [4,8]. Moreover, on hydraulic boundary
conditions, the placement of an internal PRV is a fundamental design factor that shapes
nodal pressures and leakage potential [2,3,5]. The optimal placement of pressure-reducing
valves (PRVs) is a fundamental and challenging problem in water-distribution management,
typically formulated as a mixed-integer nonlinear programming design problem [1]. The
optimization seeks to determine both the locations and the operating settings of the valves so
as to maximize their effectiveness in reducing leakage and improving energy efficiency [1,5].
Installing a valve on any branch of the network can dramatically alter the overall hydraulic
behavior [1,3], so placement should target points with the highest potential for pressure
reduction in downstream subareas [3]. Analyses indicate that employing multiple internal
PRVs can achieve more effective pressure management than relying on a single boundary
PRYV, since distributing valves provides larger pressure margins for leakage control within
the monitored areas. Conversely, a suboptimal valve location may leave many critical nodes
outside the control region of the existing valves [2], thereby directly impairing the system’s
ability to meet the required pressure target and, indirectly, the performance of DeePC.
In addition, the reservoir head sets the available energy and governs service levels. In
systems experiencing failures (e.g., pipe or pump failures), reservoirs with sufficient stored
volume can mitigate or even eliminate supply shortfalls. The effective network pressure
directly determines the service level; if the pressure at a node falls below the service-head
threshold, the delivered supply may decrease, and if it drops below the minimum-head
threshold, supply may cease altogether. Empirically, the head and operational management
of reservoirs exert a strong influence on overall network reliability [11]. Accordingly, the
performance of DeePC aimed at minimizing the pressure tracking error at a critical node
is markedly affected by the system’s overall level of potential energy provided by the
reservoirs. In online implementation, a key operational parameter is the control time step
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(At), i.e., the frequency at which the optimization is updated. In online implementation,
a key operational parameter is the control time step (At), i.e., the frequency at which the
optimization is updated, as it is a critical factor in DeePC. Similar to MPC, DeePC operates
in a receding-horizon manner: solving the optimization yields an optimal input sequence
u* over the prediction horizon N, yet only the first action of this sequence is applied
immediately to the system. After At control steps (with At < N), the problem is re-solved
by updating the most recent measurements (u;,;, Jin;), thereby shifting the prediction
horizon forward. Choosing At > 0 reduces the number of times online optimization is
required and thus lowers the computational burden. However, the update frequency (At)
must be selected in accordance with the system’s dynamics and feedback delay, if At is too
large, the controller’s ability to react to changes in real time may be impaired. Therefore, a
sensitivity analysis with respect to At is essential to determine the optimal balance between
computational efficiency and the achieved control quality (MAE) [4,7].

Against this background, the present study aims to provide a comprehensive, practice-
oriented sensitivity analysis of DeePC for pressure management in WDS, quantifying how
network/system factors (topology /boundary conditions) and algorithmic choices (parame-
terization/update frequency) affect the mean absolute error (MAE) of the controlled-node
pressure relative to a fixed reference. We systematically examine the following: (1) the
impact of internal PRV placement on the hydraulic topology and controller benefit [3];
(2) the effect of reservoir head on dynamics and control effort [11]; (3) the effect of the
control time step (online optimization frequency) [4]; and (4) the effect of regularization
weights ()\y, Ag, )\u) on the balance between accuracy and robustness [7,8]. The resulting
insights support reliable and efficient deployment of DeePC for complex operational and
optimization tasks in water networks.

2. Methodology

DeePC is a model-free control approach that enables real-time optimal decision making
for unknown or uncertainty-affected systems, without requiring an explicit mathematical
model. Unlike standard MPC, which relies on system identification and calibration of a
state space model, DeePC uses raw input-output samples from the system’s history to
predict future behavior and derive optimal control actions [4,7].

DeePC builds on Behavioral Systems Theory and the Fundamental Lemma of Willems
et al. The Lemma states that, for a linear time-invariant system, the set of all possible
trajectories can be spanned by a linear combination of past data, provided the data are
persistently exciting [12]. Accordingly, a Hankel matrix is constructed from an offline historical

data sequence (ud, yd) of length T, and partitioned into “past” and “future” blocks:

u, Uy

Y, v (1)

where Up, Y, supply the initialization information (uini, ¥ini), and Uy, Yy are used to pre-
dict over the horizon N. At each time step ¢, the algorithm solves an optimization problem
to determine the decision vector g that links the most recent measurements (#4in;, Yini) to the
future input-output sequence (u, y) via the Hankel matrices. For water systems exhibiting
nonlinearity and measurement noise, the standard formulation is extended to regularized
DeePC. The problem minimizes a cost composed of reference-tracking error, control effort,
and regularization terms:

. 2 2
min [y = Yrop ||+ [l + Agllgll + Aullow| +Ay[loy | )
%

& U, Y, Oy,
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subject to dynamic and physical constraints:

u, Uini Tu
als= "+ 1Y ®
Yy y 0

usu<u

ys=y=<y

In Equations (2) and (3), # and y denote, respectively, the valve setting inputs (PRV
head settings) and the monitored node pressure over the prediction horizon N; ujp, Yini are
the most recent Tj,; samples (“past window”) used for initialization; g is the behavioral
mixing vector selecting a linear combination of past trajectories from the Hankel columns;
and 0y, 0y are slack variables that relax the past data consistency on the input and output
blocks. The regularization weights A¢, A, A, act exactly where they appear in (2): A¢||g]|
promotes parsimonious, robust combinations (guards against overfitting to noise); Ay ||oy ||
penalizes deviations on the input-consistency block (e.g., actuation/excitation imperfec-
tions); and Ay ||oy || penalizes deviations on the output consistency block (measurement
noise/model mismatch).

Offline, we collect a persistently exciting data record (u, y) of length T and assemble
the Hankel blocks (Up, Yy, Uy, Yf). Before online operation, we select the hyperparame-
ters Tin; (initialization window) and N (prediction horizon), the control time step At, and
the regularization weights A¢, A, A;. Online, at each control instant, we measure/update
(Uini, Yini), solve (2) and (3) subject to bounds, and apply only the first input from the
optimized sequence u; after At, the horizon is shifted (receding-horizon operation), mea-
surements are refreshed, and the problem is re-solved [4,7].

The water-distribution systems used in the studies by Fossolo and Modena were
obtained from the Water Benchmark Hub [13,14]. We first validated our control implemen-
tation by running DeePC on the Fossolo network under the same conditions reported by
Perelman and Ostfeld [4], expecting to reproduce their MAE values to a close approximation.
All optimization problems in DeePC were solved with the Gurobi Optimizer (default settings).
Hydraulic simulations were carried out in EPANET via EPyT (Python 3.11) [15], and the
DeePC framework was implemented using the public PyDeePC library following Coulson’s
research [7], which is also the code base used by Perlman and Ostfeld [4]. After reproducing
comparable results, we proceeded to develop and execute the sensitivity analyses.

Each run followed a two-stage DeePC routine, randomized data collection followed
by closed-loop control. In all figures, the grey segment marks identification and the white
segment marks control, both in the pressure plot and in the PRV setting plot. For each
sensitivity setting, we re-collected a fresh identification dataset using the same randomized
excitation with a fixed seed, and rebuilt the Hankel matrices; no identification data were
reused across settings. Thus, DeePC was re-initialized under the conditions tested rather
than transferred from a different operating point. The control input u is the PRV opening
(head setting), and the measured output y is the pressure at the monitored node. Hankel
matrices were assembled from the last samples of the identification phase. We note that
alternative Hankel constructions exist in the literature, but we kept this choice fixed across
scenarios to ensure fair comparisons. We used the same randomized excitation with a
fixed seed in every setting, and identification data were re-collected per setting, which
reduces scenario variance while introducing a mild seed dependence (observed as small
MAE deviations across seeds, without altering conclusions). Unless otherwise specified
by a sensitivity test, the baseline settings were as follows: time step = 1 [h], identification
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window Tj,; = 48 [h], prediction horizon = 12 [h], closed-loop control phase duration =
1 week, and the data-collection phase comprised 600 steps. The performance metric is
MAE [m] of the monitored node pressure relative to its reference value, computed over the
control window only.

In the Modena case study, in addition to MAE, we report two complementary perfor-
mance indicators computed over the closed-loop control window only. Letk =0,..., K —1
index the control samples, let y; denote the monitored node pressure, and let y,.¢ denote
the fixed pressure reference. Define the tracking error ey = yx — Yyef. The MAE is

1 K-1
MAE = — ) | ¢ | (4)
Kk:O

To capture worst-case tracking, we also compute the maximum absolute deviation
from the reference:

Dmax =  max e 5

B ke {0, K -1} e ©)

To quantify valve actuation effort, consider m active PRVs in a given run (including

both fixed and added valves, as applicable), and let u;; denote the valve setting command

of PRV j € {1,...,m} at control sample k. We define the cumulative L; actuation effort as
the sum of absolute inter-sample changes across all valves:

k=1 m

Ep = Z Z
k=1j=1

M]',k - M]‘,k_l‘ (6)

For all sensitivity analyses except the At test, actuation effort is reported normalized by
the number of valves to enable fair comparison across scenarios with different numbers of
PRVs. In the At sensitivity analysis, where the number of control updates changes with the
sampling rate, the valve actuation effort is additionally normalized by the number of control
phase steps (equivalently, by the control duration in hours) to obtain a per-step /per-hour
average actuation per valve. This prevents the summed effort from artificially increasing as
At decreases simply because more actuation increments are accumulated.

In the reservoir head sensitivity test, Al intentionally perturbs the hydraulic boundary
conditions; therefore, for sufficiently negative Ah, the 28 [m] reference at the monitored
node may become hydraulically unattainable. In such cases, MAE is still reported as a
consistent reference tracking metric, and the outcome is interpreted as a service-feasibility
limitation rather than a controller tuning limitation. To allow for replication, Table Al in
Appendix A summarizes the baseline parameters that were kept constant throughout the
run unless explicitly changed by a sensitivity test.

For pressure regulation from the sources, PRVs were added near the reservoirs in both
networks, and baseline reservoir heads were explicitly modified relative to the Benchmark
networks: Fossolo +14 [m] at the reservoir and in Modena +25 [m] applied to all reservoirs.
In Fossolo, the reservoir adjacent valve acts as the fixed PRV (Valve 59), while Valve
58 is the tested PRYV; it is substituted in place of each candidate pipe during the code
run and evaluated as the additional PRV. In Modena, we did not attempt an exhaustive
scan. Instead, we assembled a random informed subset of 54 candidate pipes as follows:
(i) start from a uniform random sample; (ii) retain pipes that, in the baseline steady state
snapshot, exhibited relatively high throughputs, non-negligible headloss, or a topologically
strategic role (e.g., main trunks or inter-zone connectors); and (iii) force include the two
pipes adjacent to the monitored node (274, 275) to enable a near-node comparison. Baseline
EPANET flows/headlosses were used only for pre-screening and were not fed to the
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controller. The resulting set is representative but non-exhaustive; consequently, the reported
“best” location is the best among those tested.

From the outset, all PRV installations were constrained to preserve the network’s
original flow directions. To enforce this, at each iteration after positioning the PRV and
executing the DeePC run, we inspected the flow sign along the tested pipe over the
entire run. If the flow remained zero or negative and did not change sign during that
run, we reversed the valve orientation and re-ran the case, thereby restoring a positive,
physically admissible flow consistent with the original direction. Installing a PRV against
the prevailing flow effectively blocks the pipe and may impair the operation of the DeePC
controller. In Fossolo, no sign changes occurred during runs; in Modena, some pipes did
show sign changes within a run, and at this stage of the study, such pipes were excluded
from analysis and conclusions.

Beyond analyzing additional valve placements, three sensitivity studies were per-
formed, holding all other settings fixed under the same control protocol: (1) control time
step—runs at several steps while keeping the number of identification steps identical and
the total control duration identical; (2) reservoir head offsets—in Modena, a uniform Ah
was applied to all reservoirs relative to baseline, and DeePC was re-run under otherwise
identical conditions; and (3) regularization weights (“lambdas”) A, (measurement slack),
Ag (penalty on the mixing vector), and A, (actuation change smoothing). The search ranges
for the lambdas followed Coulson’s guidance [7] and were scanned on a logarithmic grid,
at each stage one weight was varied while the other two were held constant, and the roles
were then cycled. Given this coarse “one factor at a time” sweep (three logarithmically
spaced levels per weight), the analysis provides a local indication only and does not warrant
inference about global linear or non-linear trends.

3. Case Studies

To assess how various factors influence DeePC performance, we conducted sensitivity
analyses on two water distribution systems: Fossolo (simpler) and Modena (more complex).
The network models were taken intact from a public repository [13,14]. The only modi-
fications to the original files were (1) adding pressure-reducing valves (PRVs) near each
reservoir which function as the control actuators that regulate the system pressure, and
(2) increasing the source head to allow sufficient excess head to maintain the desired pres-
sure levels of the system: +14 [m] in Fossolo and +25 [m] for every reservoir in Modena. No
other changes were made to the models. Within this setup, several factors were examined
for their effect on method performance.

3.1. Fossolo Case Study

As part of the sensitivity analysis, the Fossolo network served as the first case study, as
shown in Figure 1. Node 21 was selected as the monitored node, with a pressure reference
of 30 [m]. In Fossolo, we evaluated the effect of adding one additional PRV within the
network. Each pipe was tested as a secondary valve candidate in turn. The pipe was
temporarily replaced by a PRV, a DeePC experiment was run, and the MAE of the pressure
at Node 21 relative to 30 [m] was computed. The pipe was then restored before proceeding
to the next. All runs comprised the same randomized identification phase, followed by
closed-loop control using DeePC.

As a reference baseline (see Figure 2), we ran DeePC on the Fossolo network with PRV
59 as the only actively controlled valve, with no additional changes or interventions. The
experiment settings match those used in the comparison runs. During the control phase,
the pressure at Node 21 tracked the 30 [m] reference with a mean absolute error (MAE) of
3.35 [m]. This value serves as the baseline for comparison, and subsequent experiments are
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compared against this MAE to determine whether each intervention improves or degrades
performance and by how much.

Pipe 43 N Pipe2s &
\ }\ Valve 59
Node 21 —=

Legend
oy Best
oy MAE<27
B4 27<MAE<3
B4 3<MAE<335
W 335<MAE<4
B9 4<MAE<5
o4 MAE>5
.L Worest

s & . &

Figure 1. Fossolo network with labels for the pipes, nodes, the reservoir, and the relevant valve. A
spatial visualization of the search results for the location of an additional pressure-reducing valve
(PRV). Each pipe is marked with a PRV icon color-coded by the MAE bin (see legend). The best
candidate is highlighted by a larger green icon and the worst by a larger red icon. In all runs, PRV 59
was kept fixed while PRV 58 was moved across pipes; MAE is computed for the pressure at Node 21
relative to the 30 [m] reference.

650
—— Pressure at node 21

--- Ref30m

Pressure [m]
£l &
|
1
|
|
|
1
|
|
|
i

10 4

70
—— PRV 59

60 4

Valve setting [m]

20
o 100 200 300 400 500 600 700 800

Time [hr]

Figure 2. Baseline configuration with no additional pressure-reducing valve (PRV), used for per-
formance comparison: The top plot shows the pressure at Node 21, where the pressure sensor is
located, over time. The dashed line marks the 30 [m] reference of desired pressure. The bottom plot
shows the pressure setting of the PRV at the system inlet. The grey segment marks the randomized
data-collection/identification phase, and the white segment marks the closed-loop control phase
using DeePC. The run is performed under the same experiment conditions as the location-search
experiments and serves as the baseline for computing the MAE.

As shown in Figure 1, the additional PRV location yields a wide range of outcomes;
some locations improve the MAE relative to the baseline (3.35 [m]), while others degrade it.
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The legend splits results into values below 3.35 [m] and above 3.35 [m]. The best location is
Pipe 43, whereas the worst is Pipe 23. A pattern emerges whereby locations closer to Node
21 in network path length tend to improve the MAE, with some more distant locations also
providing improvements.

In Figure 3, we compare two locations for the additional valve: (a) Pipe 43 (best) and
(b) Pipe 23 (worst). In Figure 3a, once the closed-loop control begins (white background),
the pressure at Node 21 settles near the 30 [m] reference with reduced variance. The valve-
setting plot shows balanced participation of the two valves, and their settings vary across
the range without lingering at extremely high or low values. In Figure 3b, the pressure
stays low for extended periods and does not cleanly converge. The valve-setting plot shows
PRV 58 carrying most of the control effort, whereas PRV 59 (near the reservoir) remains
near its upper limit for long intervals, almost fully open, so its contribution to controlling
the node pressure is negligible.

° —— Pressure at node 21
0 | ‘ I f ! -—- Ref30 m
‘E ) J ‘I ‘ | il ll |
R - | liu,d TGN My | 1 ‘Ii I |'.,."- T AR
[l P T LI
v 5 | AR | | || I
a
10 I f
]
(a) 70
. 60
E
-
§
g a0
£
30
20
Time [hr]
* —— Pressure at node 21
‘ === Ref30 m
w0
. H Hll ||,.JH I‘u“.llill. |[MM ”}
5
E]
Elﬂ
[
10
0 . '
(b) ° MA v —— PRV 59|
I ‘ —— PRV 58
— 60 | f T
E | l i,
2 % | JiA ! LA | ]
A VIAA
¢ ' ‘ | Ll ‘
AT I
o | ‘\!
U
20

’ " tmeta - -

Figure 3. Impact of the additional PRV location on the control performance. In each panel: The top
plot shows the pressure at the monitored node over time (dashed line= 30 [m] reference), and the
bottom plot shows the PRV pressure settings, PRV 59 is the fixed (baseline) valve, and PRV 58 is the
additional valve whose location is varied across pipes. The grey segment indicates the randomized
data-collection/identification phase, and the white segment indicates the closed-loop control phase
using data-enabled predictive control (DeePC). (a) Best location, selected by minimizing the MAE of
the controlled-node pressure relative to the reference; (b) worst location under the same experiment
setup and plotting conventions.
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To assess generality, we repeated the location-search experiment for another monitored
node, Node 15, under identical settings. Results followed the same pattern observed in the
Node 21 monitoring case: locations closer in network path length (number of links) to the
monitored node tended to yield lower MAE, with occasional exceptions. For example, the
best location for Node 15 was Pipe 30, adjacent to Node 15, mirroring the result obtained
when Node 21 was the monitored node.

To consolidate the search outcomes in the first experiment (when Node 21 was moni-
tored), Figure 4 plots the MAE for every pipe considered as the location of the additional
valve. Beyond Pipe 23, the worst outlier (red), several other underperforming candidates
are visible, e.g., Pipe 54 with MAE around 8.5 [m], and several additional pipes with MAE
in the 4-5.5 [m] range. Conversely, near the best location (green), there are several near ties
with comparably low MAE, representing clear improvements over the baseline without an
additional PRV. This compact view enables a clear ranking of all candidates and highlights
the strong location sensitivity: several placements are “good enough,” whereas a poor
choice can markedly degrade performance.

Mean absolute error

Figure 4. MAE for each candidate pipe where the additional pressure-reducing valve (PRV) is placed.
X-axis: pipe ID, Y-axis: MAE of the pressure at Node 21 relative to the 30 m reference. In all runs,
PRV 59 is kept fixed, whereas PRV 58 is installed in turn on each pipe as the candidate. The green
dot marks the best location (lowest MAE), and the red dot marks the worst (highest MAE). All
experiments were performed under the same identification and control settings.

To assess the influence of dominant flow paths on the error, we ran a simple correlation
check. For each candidate location (each pipe), we took two local indicators on the pipe
where the PRV was installed: (i) the head loss across the pipe and (ii) the flow through it,
and paired each with the MAE obtained for that DeePC run. Scatter plots of MAE vs. Ah
and MAE vs. flow (Q) showed no clear or monotonic dependence.

3.2. Modena Case Study

Continuing the sensitivity analysis, the Modena network served as the second case
study (Figure 5). It is a larger system supplied by four sources. Node 201 was selected
as the monitored node, and the pressure reference was set to 28 [m]. In this section, we
examined the effect of several factors on the DeePC performance, including the placement
of an additional PRV within the network, while keeping identical experiment settings
across all runs (same randomized identification phase followed by closed-loop control).
Prior to all sensitivity studies, we executed a baseline DeePC run with no additional
modifications, which yielded an MAE of 2.19 [m], a maximum deviation of 7.8 [m], and a
valve actuation effort of 1173.09 [m] at Node 201. This baseline was used as the reference for
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all comparisons and sensitivity cases that reduce the MAE, which is the primary measure in
this study, below 2.19 [m] are considered improvements, whereas cases that increase it are
considered degradations.

Valve 315

Figure 5. The Modena water distribution network used in this study, with labels for the components
referenced in the paper (valves, selected nodes, and pipes).

3.2.1. Additional Valve

Figure 6 shows the closed-loop DeePC response when the additional valve is placed
on Pipe 312. Because the Modena network is large, we evaluated a sample of 54 candidate
pipes under identical settings (see the full results in Appendix B). In each run, an additional
valve was installed on a candidate pipe, the DeePC experiment was executed, and the MAE
of the pressure at Node 201 relative to 28 [m] was computed. Among all candidates, Pipe
312 achieved the lowest MAE but higher maximum deviation and valve actuation effort
than the baseline, as can be seen in Table 1. In contrast to the Fossolo case study, pipes near
the monitored node (e.g., 274 and 275) did not outperform Pipe 312 in the MAE calculation.

Table 1. Comparison of closed-loop control performance between the baseline configuration and
the configuration with an additional internal PRV. Reported metrics are the mean absolute error and
maximum deviation of the monitored node pressure from its reference [m], and the valve actuation
effort [m] computed over the control phase.

Configuration Mean Absolute Error [m]  Maximum Deviation [m] = Valve Actuation Effort [m]
Baseline 2.19 7.8 1173.09
Fixed PRV + internal PRV 2.02 8.33 1732.92
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Figure 6. Experiment assessing whether adding an additional pressure-reducing valve (PRV) im-
proves the MAE. The top plot shows the pressure at Node 201 over time (dashed line = 28 [m]
reference), the grey segment denotes the randomized data-collection/identification phase, and the
white segment the closed-loop control phase using DeePC. The bottom plot shows the valves’ set-
tings [m] for the active PRVs (PRV 315, 317, 319, 321, and PRV 312—the added valve in this run).
Experiment conditions match those of the comparison runs, and the result is used to quantify the
effect of the additional valve on the MAE.

Figure 6 also shows that all valves contribute to control; in particular, PRV 312 provides
substantial, sustained actuation. Its settings remain away from the extremes, indicating
effective regulation and a direct influence on the pressure at the monitored node, consistent
with the behavior of the reservoir-inlet PRVs.

3.2.2. Time Step in DeePC

Figure 7 presents a sensitivity analysis of the control time step in DeePC. All runs
used the same number of identification samples and the same closed-loop evaluation
horizon. Therefore, a smaller time step produces more control updates and a shorter grey
identification segment. Figure 7a is the baseline case (time step of 1 h) against which all
sensitivities are compared. Qualitatively, in all cases, the pressure at Node 201 settles
during the control phase around the 28 [m] reference. The number of control updates
required for settling is similar across cases, but when the time step is smaller (e.g., 0.25 h,
0.08 h), the control phase contains many more steps, so the relative portion occupied by
settling is smaller. With a larger time step, the same number of steps occupies a larger time
fraction and appears longer on the axis. After settling, the oscillations have a relatively
small amplitude and no sharp spikes.

Figure 8 summarizes the sensitivity to the control time step. We tested nine time
steps, mostly in 0.25 h increments, plus a short 0.08 h (5 min) case, with the baseline of
1 h highlighted in green. A clear, consistent decrease in MAE is observed as the time step
decreases, indicating improved reference tracking under more frequent re-optimization.
Consistent with this improvement, the valve actuation effort also decreases as the time step
decreases, suggesting smoother control actions at higher update rates (as quantified by the
normalized effort definition described in the methodology). In addition, the maximum
deviation metric remained unchanged across all tested time steps, yielding the same
value of 7.8 [m] for every At. Over the tested range, the trend appears approximately
linear qualitatively.

https://doi.org/10.3390/w18020253


https://doi.org/10.3390/w18020253

Water 2026, 18, 253

12 of 22

05 hour

Pressure [m]
8 8 3

5

Valve setting (m]
5 8 8

8

g 8

Valve setting [m]
&

iy

nllli LI.”‘ ) nm

8

460
Time [hr]

Time [hr]

@ (b)

025 hour 0.08 hour

Pressure [m]

Valve setting [m]
& & 8

8

20

2

g

wmmwmwmmm

x|[| ')I ™ \‘U‘l"‘

Valve setting [m]
8

it M""WM‘ ‘wnr«mn i
I ‘H Y )
it H'In" A Hrli'l 1A

Time [hr]

8

-

Time [hr]

() (d)

Legend

—— Pressure at node 201 —— PRV 319 —— PRV 315
-—- Ref28m —— PRV 321 —— PRV317

Figure 7. Sensitivity of the control time step in DeePC (sampling interval for updating the PRV
settings). In each panel, the top plot shows the pressure at Node 201 over time (dashed line = 28 [m]
reference), and the bottom plot shows the valve settings [m]. The grey segment marks the randomized
data-collection/identification phase, and the white segment marks the closed-loop control phase. All
runs are identical except for the control time step. (a) 1 h; (b) 0.5 h; (c) 0.25 h; (d) 0.08 h. The legend
below the panels maps colors to the active valves and indicates the pressure reference line.

12 EEm Mean absolute error [m]
B Valve actuation effort [m]
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Figure 8. Bar chart summarizing the control time-step sensitivity in DeePC. For each tested control
time step (x-axis: time step [h]), bars report (i) the mean absolute error of the controlled-node pressure
relative to the 28 [m] reference and (ii) the valve actuation effort over the control phase (both in [m];
y-axis). The baseline time step (1.00 [h]) is highlighted in green: dark green denotes the MAE bar
and light green denotes the actuation-effort bar. The remaining MAE bars are shown in blue, and
the actuation-effort bars are shown in orange. Values are annotated above the bars. Lower values
indicate better performance.
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3.2.3. Reservoir Head Change

As shown in Figure 9, applying a uniform reservoir-head change Ah strongly affects
the closed-loop behavior at Node 201 (baseline for comparison: Figure 7a, Ah = 0).
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Figure 9. Sensitivity of control performance to reservoir head levels using DeePC. In each panel, the
top plot shows the pressure at Node 201 over time (dashed line = 28 [m] reference). The bottom plot
shows the valve settings [m] of the pressure-reducing valves (PRVs). The grey segment indicates
the randomized data-collection/identification phase, and the white segment indicates the closed-
loop control phase. In each run, a uniform offset Ah [m] was applied to the heads of all reservoirs
relative to their baseline values. The panels present a representative subset of the tested offsets.
(a) Ah = =25 [m]; (b) Ah = —15 [m]; (c) Ah = —10 [m]; (d) Ah = +10 [m]; (e) Ah = +30 [m]. The legend
below the panels maps colors to the active valves and indicates the pressure reference line.

In several negative Ah runs, the monitored node pressure remains below the 28 [m]
reference throughout the control phase, indicating that the reference is not fully attainable
under the reduced supply head. Accordingly, even when PRVs move toward larger open-
ings, the controller’s ability to recover the reference is limited by the boundary conditions,
and MAE is therefore used here as a uniform tracking metric while noting the service
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feasibility limitation. More specifically, for Al < 0 (panels a—), the pressure remains below
the 28 [m] reference for extended periods and does not cleanly converge, and several valve
traces are out of bounds or stick to the upper limit, indicating valves that are nearly fully
open and thus have limited direct leverage on the node pressure. In contrast, for Ak > 0
(panels d—e), settling to the reference is faster, followed by oscillations of relatively small
amplitude. Using the legend colors, one can identify the more/less active valves in each
case, and traces near the upper bound denote nearly open valves with minor effect, whereas
traces at moderate, varying levels indicate active participation in control.

Table 2 compiles the reservoir heads obtained for each tested Al and confirms a uniform
offset across all reservoirs. For example, Ah = —25 yields 72, 73.8, 73, and 74.5 [m], and
Ah = 430 yields 127, 128.8, 128, and 129.5 [m]—i.e., the same baseline heads plus/minus
Ah. Beyond validating the setup, these numbers anchor the physical scale, and a range of
~70-130 [m] is plausible for an urban water network (reservoir heads reflecting topography
and friction losses). Hence, Ah = —25 [m] represents a large change (=25% of the baseline
head), whereas Ah = +10 [m] is moderate. This aligns with performance; low-head
scenarios (Ah < 0) coincide with weaker control and higher MAE in Figure 9a—c, whereas
increased head (Ah > 0) is associated with faster settling and lower MAE in Figure 9d,e.
Listing the reservoir IDs ensures the scenarios are fully reproducible.

Table 2. Resulting reservoir heads [m] after applying a uniform head difference Ak[m] to all reservoirs.
For each Al case (as shown in Figure 11), the reservoir IDs and the resulting head values [m] are reported.

A Head [m] Reservoir ID Reservoir Head [m]
269 72
270 73.8
—25 271 73
272 74.5
269 82
270 83.8
—15 271 83
272 84.5
269 87
270 88.8
—10 271 88
272 89.5
269 107
270 108.8
10 271 108
272 109.5
269 127
270 128.8
30 271 128
272 129.5

As shown in Figure 10a, the overall trend shows decreasing MAE as Ah increases,
but there are notable exceptions on the negative side, as both Ah = —15 (0.54 [m]) and
Ah = —10 (2.71 [m]) yield lower errors than Ah = —5 (3.01 [m]), contrary to the general
pattern. For positive offsets, a performance floor emerges, and values become nearly
constant at about 0.49 [m] starting around Ah = +30. Since no points were tested between
+25 and +30, the onset of this plateau occurs somewhere in that interval, but its exact
location cannot be determined from the present sampling. Figure 10b complements the
tracking results by reporting the maximum deviation and the valve actuation effort for
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(a)

(b)

the same reservoir-head offsets. Both metrics show substantial sensitivity for negative Ah,
while for sufficiently large positive offsets, the system exhibits consistently low maximum
deviations together with a relatively stable actuation demand. Overall, the positive-offset
regime that yields the MAE plateau is also associated with comparatively steady behavior
in both maximum deviation and actuation effort.
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Figure 10. Sensitivity to a uniform reservoir-head offset (Ah) applied to all reservoirs under identical
control settings. (a) Mean absolute error of the pressure at Node 201 relative to the 28 [m] reference
(y-axis) as a function of reservoir head (x-axis), the baseline case (Al = 0) is highlighted in green.
(b) Maximum deviation (left y-axis) and valve actuation effort (right y-axis) for the same Ah values.

3.2.4. DeePC Regularization Weights

Figure 11 reports the sensitivity of the DeePC regularization weights (/\y, /\g, Au) on
the tracking performance at Node 201, varying one weight per panel while keeping the
others fixed (as indicated). In the visualization, the three metrics are shown simultaneously
using different marker shapes—MAE, maximum deviation, and valve actuation effort—
and, for each metric, the lowest observed value within the tested settings is highlighted by
coloring that marker in green. Within the sampled ranges, the spread in MAE is modest
(=~0.1 [m] between worst and best) and smaller than the effects observed in the other
sensitivity studies on this network (e.g., control time-step and reservoir-head changes).
Among the tested settings, the lowest value occurred for (A, Ag, A,) = (10%, 1073, 1072)
yielding MAE ~ 2.11 [m]. Given the sparse, representative sampling, we refrain from
inferring global trends. Any further gains would likely require a broader, systematic sweep.
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Figure 11. Sensitivity of the DeePC regularization weights (A,, Ag, A,;). In each panel, the x-axis
(log scale) shows three representative values of the varied weight, while the other two weights are
held fixed (reported inside each panel). The y-axis reports valve actuation effort on the left axis and
MAE and maximum deviation on the right axis (all in meters). Marker shapes follow the legend:
circles—MAE, triangles—maximum deviation, squares—valve actuation effort. For each metric,
the marker corresponding to the lowest value among the tested settings is highlighted in green.
(a) Varying A,, € {10°,10',10?} with A; = 1072 and A, = 1072; (b) varying Ay € {1073,1072,10 !}
with Ay =102 and A, = 1072; (c) varying A, € {1073,1072,107 } with A,, = 10> and Ay = 1073,

4. Discussion

Prior work using optimization algorithms has established that optimally locating
pressure-reducing valves (PRVs) can be crucial for regulating pressures in water distri-
bution systems, reducing leakage, and even enabling energy savings (and recovery) [1,5].
Motivated by these findings, we examined how PRV placement interacts with the DeePC
method and whether different PRV locations can improve its performance. The analyses on
the two networks, Fossolo and Modena, show that adding a PRV can substantially improve
tracking of the pressure reference at the monitored node; however, the benefit depends
strongly on the added valve’s location and on the local hydraulics.

In the Fossolo network (Figure 1), there was a tendency for topologically closer loca-
tions to the monitored node to yield a lower MAE, both when Node 21 was monitored and
when the experiment was repeated with Node 15. Still, exceptions were observed, hinting
at the role of dominant flow paths. To prove this, we tested two simple indicators: the pipe
flow magnitude and the pipe headloss where the PRV was installed. Neither exhibited a
clear relation to the resulting MAE, suggesting that dominant paths are not captured by
these indicators alone.

In the Modena network (Figure 5), the “closeness” pattern did not persist. The best
location was found not at the pipe closest to the monitored node but rather near one of
the reservoirs, consistent with the first placement identified by the algorithm reported by
Price et al. [3], where the added valve exerted significant control over a large sub-network
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with downstream surplus pressures. By contrast, locations immediately adjacent to the
monitored node (Pipes 274 and 275) did not outperform the baseline. This reinforces
that there is no universal rule for PRV placement. To find a DeePC-enhancing location,
one must run a brute force search on small networks or rely on an external optimization
procedure on larger ones. In addition, Table 1 compares the baseline Modena configuration
to the best-performing configuration with one additional internal PRV (Pipe 312). The
added internal PRV improves the primary tracking metric, reducing MAE from 2.19 [m] to
2.02 [m]. However, this improvement is accompanied by a higher valve actuation effort
and a slightly larger maximum deviation, indicating a clear trade-off between average
tracking accuracy and control effort and occasional excursions. A plausible explanation is
that introducing an additional degree of freedom allows DeePC to “work harder” (more
frequent/larger adjustments distributed across valves) to reduce the average error, even if
it does not simultaneously reduce peak deviations.

Figure 3 further indicates that when two valves operate simultaneously, one valve may
become dominant while the other remains nearly wide open with little effect. In the worst
Fossolo case, the original reservoir valve was mostly at high settings (i.e., largely open),
whereas the added valve governed most of the control action, leading to less stable tracking
and a higher MAE. This observation is consistent with Price et al. [3], who underscore the
strategic importance of the reservoir-adjacent valve for pressure regulation, as a nearly fully
open reservoir valve effectively mimics the absence of a regulating valve at that location.
The Modena comparison in Table 1 is consistent with this interaction perspective, adding
an internal valve can shift and intensify the control action rather than simply “adding
regulation for free,” which helps explain why lower MAE may coincide with increased
actuation effort.

Regarding controller parameters, a shorter control time step consistently improved
performance. Reducing the step increases the number of control iterations within a fixed
window, as seen in Figure 7, and convergence to the reference within the window is
faster for smaller steps. Consequently, the MAE, an average over the control window,
puts greater weight on the many post-convergence samples (with smaller oscillations) as
the step decreases. A similar monotonic trend is also observed for the valve actuation
effort: as the time step increases, the actuation effort increases as well (Figure 8). This is
consistent with the valve and pressure trajectories in Figure 7, where after convergence the
pressure fluctuations reduce, and the control actions become more stable; therefore, using
a smaller step effectively yields a larger portion of post-convergence “steady” samples
within the fixed window, which reduces both the averaged tracking error and the averaged
actuation effort. Notably, the maximum deviation remained identical across all tested time
steps (7.8 [m]). This supports the interpretation that a single “worst” transient segment
occurring early in the control phase dominates the peak error, while the remainder of the
window becomes progressively less oscillatory. As a result, changing At primarily affects
the average metrics (MAE and actuation effort) through the growing proportion of post
transient samples, but does not increase the observed peak beyond that early worst-case
value. Based on this behavior, we anticipate that continued reductions in the time step will
approach a practical error floor at which the MAE stabilizes. In our sampled range, both
MAE and actuation effort exhibit an approximately linear trend with the time step (Figure 8).
Interestingly, the MAE improvement across the examined steps was approximately linear
(Figure 8), which is notable because the time step is an algorithmic choice in DeePC rather
than a network-specific characteristic.

Reservoir head levels had a particularly strong effect (Figures 9 and 10a,b). The
sensitivity analysis shows that the available hydraulic energy at the sources directly impacts
control quality and MAE at the monitored node. In line with Wagner et al.’s results on
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service-level criteria and head sufficiency at supply nodes [11], insufficient head leads to
degraded service, which manifests as worse control performance. In Figure 10a, increasing
the head relative to baseline improved tracking up to an apparent plateau between +25
and +30 [m]. Conversely, large decrements severely degraded performance due to a lack
of “hydraulic power.” These results stress the need to calibrate the system before running
DeePC so that the controller is assessed under meaningful operating conditions. The
non-monotonic behavior seen for —15 [m] and —10 [m] (Figure 9b,c), a drop, then a rise,
stems from the network lacking sufficient head to drive flow to the monitored node. The
measured pressure exhibits very small oscillations tightly near the 28 [m] reference from
below. Figure 9a shows a related case where the pressure does not approach the reference
at all. Altogether, these findings indicate a practical improvement limit and the importance
of calibrating reservoir heads prior to control. In addition to MAE, Figure 10b complements
the interpretation by reporting maximum deviation and valve actuation effort. Unlike
the largely monotonic MAE trend (Figure 10a), these two metrics do not exhibit a single
clear monotone pattern across Ah. For the most negative offsets (and around —5 [m]), the
maximum deviation becomes relatively large, consistent with a “struggle” regime in which
the controller attempts to compensate for insufficient hydraulic head. Importantly, the
relatively low MAE observed at —15 and —10 [m] should therefore be interpreted cautiously,
as, despite low average error, the pressure can remain “stuck” near the reference from below
due to head insufficiency, so the MAE may reflect a constrained operating point rather
than genuinely improved controllability. For positive offsets, the decrease in maximum
deviation from about —5 [m] toward higher heads is consistent with easier regulation as
more head becomes available; however, beyond roughly +30 [m], the actuation effort curve
suggests a shallow optimum rather than a strict plateau, with the lowest effort occurring
around the +30 [m] case and a slight increase thereafter. This indicates that while higher
heads can improve MAE, they do not necessarily minimize control effort, and a practical
operating point may be better selected by balancing the three metrics. Finally, the actuation
effort metric appears most informative once the valves begin actively modulating (rather
than remaining near a saturated “mostly open” behavior under severe head deficit), which
is consistent with the time series behavior in Figure 9.

Finally, the tuning of regularization weights modestly affected performance compared
to the other sensitivities. Good operating points were found, but no dramatic changes be-
tween neighboring values. Following Coulson et al. [7], we selected the tested ranges, and,
within them (Figure 11a—c) we observed the following: (i) higher A, improved tracking;
(ii) a relatively small Ay yielded the lowest MAE, while larger values degraded performance;
and (iii) for Ay, there was an interior best value, with too small or too large values worsening
MAE. The meaning of these choices follows the guidance in Coulson et al.’s work [7]. In
Figure 11a—c, the same qualitative conclusion holds for the maximum deviation, which
shows similarly mild sensitivity, indicating that pressure oscillations are not strongly am-
plified by neighboring regularization settings within the tested grid. In contrast, the valve
actuation effort exhibits a clearer dependence on the regularization weights, suggesting that
the tuning primarily changes how “aggressively” the controller uses the valves rather than
fundamentally altering the achievable tracking quality. This is consistent with the role of the
regularizers, particularly Ay, which directly penalizes the control sequence and therefore
affects how strongly the optimizer modulates the PRVs, while A, and Ag can also influence
effort indirectly by changing the preferred trajectory fit and the regularization of the DeePC
decision variables [7]. Across the sampled combinations, some cases show overlap between
the best-performing settings of different metrics (as indicated by the green-highlighted
markers per metric), but this is not systematic in such a sparse grid. Overall, these results
suggest that once reasonable ranges are selected (per Coulson et al. [7]), the final choice of
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regularization weights may benefit from placing additional emphasis on valve actuation
effort, which appears more discriminative here, while acknowledging the inherent trade-off
between the three objectives. A broader and denser sweep would be needed to confirm
whether the observed overlaps persist and to identify robust multi-metric settings.

5. Conclusions

This study shows that DeePC performance in water distribution systems is sensitive
to operating conditions and therefore should be preceded by baseline calibration of the
system (especially reservoir-head conditions) to avoid biased, artificially bounded, or
unreliable outcomes and to realize the controller’s potential. Across the sensitivities we
examined, PRV placement, control time step, reservoir head, and regularization weights,
we observed performance gains when an additional PRV was placed at favorable locations,
the control time step was reduced, and the reservoir head was sufficient to supply the
required hydraulic power. The tuning of regularization weights had a measurable but
comparatively modest effect. The results should be interpreted as local, baseline-anchored
sensitivities because we varied one factor at a time while holding the others fixed. Potential
cross-factor interactions (e.g., At X A, Ah x PRV placement) were outside the present scope
and are a natural direction for future work. In addition to that, additional factors may also
be relevant and warrant systematic investigation. We found that the sensitivity-driven
improvements are not limited to MAE, depending on the operating condition, maximum
deviation, and valve actuation effort, and can either improve alongside MAE or reveal
trade-offs (e.g., improved tracking at the expense of higher actuation effort when adding
an internal PRV). Across both benchmark networks, DeePC achieved repeatable closed-
loop tracking of a fixed pressure reference using only measured input—output data and
valve constraints, and its performance responded consistently to hydraulically meaningful
changes. In Fossolo, several internal PRV placements reduced the baseline MAE, whereas
unfavorable placements markedly increased the error, demonstrating that DeePC can both
benefit from and diagnose structural controllability differences within the network. In
Modena, the best tested candidate improved the baseline MAE, and time-step refinement
yielded a consistent MAE reduction over the examined range. Moreover, consistent with the
MAE trend under time-step refinement, the valve actuation effort decreased as the time step
decreased, indicating that improved tracking was accompanied by less aggressive control
action over the stabilized portion of the window. Reservoir-head offsets had a pronounced,
physically interpretable effect: increasing heads improved tracking until a plateau, while
negative offsets degraded performance. Finally, the comparatively modest spread observed
under the tested regularization weight settings indicates that, once baseline hydraulic
conditions are plausible, DeePC can deliver stable pressure control without requiring
excessively delicate tuning. At the same time, the actuation effort metric was more sensitive
than the pressure error metrics to changes in regularization weights, suggesting that once
a reasonable range is selected, practical tuning can prioritize effort/operability without
substantially compromising tracking. As a concrete next step, we propose an outer loop
genetic-algorithm optimization that searches over candidate PRV locations, using DeePC-
in-the-loop experiments to score each candidate and select the placement that minimizes
the tracking error. Future work should also extend the performance assessment beyond a
single monitored node by incorporating spatial service metrics (e.g., network-wide pressure
compliance and spatial pressure variability) to ensure that improved local tracking does
not come at the expense of degraded conditions elsewhere in the network.
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The following abbreviations are used in this manuscript:

DeePC  Data-Enabled Predictive Control
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PRV Pressure-Reducing Valve

WDS Water Distribution Systems

RTC Real-Time Control

MPC Model Predictive Control

Appendix A

Table Al. Baseline parameters and evaluation settings.

Item

Fossolo Modena Notes

Monitored node (reference)

Node 21 (30 [m]) Node 201 (28 [m]) Fixed within each case study

Excitation distribution
(identification phase)

Data-collection samples

Control-phase duration
Time step (At)
Prediction horizon (N)
Initialization horizon
(T_ini)

Solver

Randomized input generated from
a uniform distribution over the

Uniform random Uniform random admissible PRV setting bounds,
fixed seed for reproducibility
Randomized excitation with
600 steps 600 steps a fixed seed
168 [h] (1 week) 168 [h] (1 week) MAE computed over this window
1[h] 1[h] Varied only in the At sensitivity
12 [h] 12 [h] As in baseline across tests
Hankel built from last T_ini
48 [h] 48 [h] samples of identification
Gurobi Optimizer Gurobi Optimizer
(default settings) (default settings) For all DeePC solves

Appendix B Raw Results of the Sensitivity Analyses

Table A2. Relative to the 28 [m] reference, under identical identification and control settings. In each
run, the additional PRV was installed on the pipe listed in the row, while all other settings were kept
unchanged. The table enables a direct ranking of candidates.

Num ID MAE Num ID MAE
1 191 2.22 30 227 2.67
2 244 2.58 31 170 2.73
3 223 2.68 32 206 2.19
4 205 227 33 225 2.22
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Table A2. Cont.

Num ID MAE Num ID MAE
5 210 2.33 34 253 3.30
6 254 2.39 35 252 2.39
7 293 2.42 36 250 2.39
8 281 2.49 37 211 2.40
9 212 2.15 38 204 2.42
10 169 2.17 39 312 2.02
11 206 2.24 40 311 2.34
12 173 2.27 41 186 2.37
13 222 2.30 42 185 2.38
14 208 2.32 43 176 2.40
15 207 2.35 44 294 2.42
16 270 2.43 45 310 2.45
17 249 2.47 46 184 2.48
18 248 2.30 47 255 2.48
19 214 2.47 48 307 2.49
20 228 2.56 49 288 2.49
21 213 2.58 50 256 2.50
22 226 2.58 51 289 44.59
23 172 2.58 52 290 55.97
24 269 2.60 53 291 56.82
25 171 2.61 54 190 2.39
26 274 2.65 55 298 2.43
27 275 2.66 56 257 243
28 296 2.56 57 189 2.49
29 295 2.58 - - -

Table A3. Raw results of the uniform reservoir-head offset sensitivity analysis. The table reports

three performance metrics: mean absolute error of the controlled node pressure (Node 201) relative

to the 28 [m] reference, maximum deviation from the reference, and valve actuation effort during the

control phase (in meters).

Reservoir Head MAE Maximum Deviation Valve Actuation Effort
-25 10.46 12.11 895.06
-20 5.52 7.87 1610.04
—15 0.54 4.33 1156.08
—10 2.71 4.58 1532.86
-5 3.01 9.28 1474.96

0 2.19 7.8 1173.09
5 1.08 4.39 1164.91
10 0.78 4.83 1292.78
15 0.66 3.16 1348.89
20 0.57 2.79 1094.17
25 0.59 2.75 1340.02
30 0.49 2.1 1175.45
40 0.49 2.7 1115.7
50 0.49 2.76 1116.24

https:/ /doi.org/10.3390/w18020253


https://doi.org/10.3390/w18020253

Water 2026, 18, 253 22 of 22

Table A4. Raw results of the control time-step sensitivity analysis. For each At, control was executed
over a fixed duration of 168 h, such that the number of control updates varies with the time step. The
table reports three performance metrics: mean absolute error of the controlled node pressure (Node
201) relative to the 28 [m] reference, maximum deviation from the reference, and valve actuation
effort, normalized by the control-phase duration to enable a consistent comparison across different

At values.
Time Step MAE Maximum Deviation Valve Actuation Effort
0.08 1.43 7.8 447
0.25 1.59 7.8 4.67
0.5 1.81 7.8 5.31
0.75 1.98 7.8 6.13
1 2.19 7.8 6.98
1.25 2.35 7.8 7.69
1.5 2.54 7.8 8.48
1.75 2.65 7.8 8.87
2 2.76 7.8 9.22
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