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Abstract Water distribution systems (WDSs) utilize battery‐powered sensors to monitor essential
parameters like flow rate and pressure. Limited battery life requires reducing data upload frequencies to
conserve energy, potentially compromising real‐time monitoring vital for system reliability and performance.
This challenge is addressed by leveraging temporal redundancies from daily cycles and spatial redundancies
from sensor data correlations, enabling data extrapolation instead of continuous transmission. This study
proposes an edge computing‐based sensor scheduling method that optimizes data transmission frequency while
maintaining high data accuracy, thereby extending sensor longevity without sacrificing monitoring capabilities.
The proposed approach uses predictive models to forecast future sensor values over multiple time steps based on
existing data redundancies. If the deviation between predicted and actual measurements is within a predefined
threshold, data transmission is skipped, reducing sensor power consumption; otherwise, data is transmitted to
ensure accuracy. Applied to a realistic WDS sensor network, the method achieved up to a 75% reduction in
sensor energy consumption with 48 estimation steps and a 0.5 m error threshold, while maintaining a relative
data error of only 0.7%. These results demonstrate the method's effectiveness in balancing energy savings with
data reliability, suggesting a viable solution for enhancing WDS sustainability and efficiency.

Plain Language Summary Most sensors in water distribution systems are battery‐powered, with
data uploads accounting for 80% of their total energy consumption. To conserve energy, traditional approaches
adopted by water utilities involve uploading system status data only once or twice per day. However, this results
in a lack of real‐time data availability, significantly limiting its practical applications. This study introduces an
edge‐based sensor scheduling method that leverages the spatiotemporal redundancy of sensors in water
distribution systems. By establishing predictive models for each sensor, the method reduces the upload of
redundant information. Importantly, this approach significantly conserves sensor energy while maintaining data
accuracy, effectively resolving the conflict between real‐time data uploads and energy consumption.

1. Introduction
Water distribution systems (WDSs) are essential components of urban infrastructure, delivering water to resi-
dents, businesses, and industries (Dave & Layton, 2020). Rapid urbanization and population growth have
expanded and complicated modernWDSs (Tchórzewska‐Cieślak et al., 2024). Ensuring their efficient, stable, and
long‐term operation presents significant challenges and requires advanced technologies to guarantee reliable
supply, system resilience, and water quality.

To tackle issues like pipe bursts (Qi et al., 2018), water leakage (Zhang et al., 2016), high energy consumption
(Salomons & Housh, 2020), and water contamination (Bazargan‐Lari, 2014), water utilities are increasingly
adopting smart technologies such as hydraulic modeling (Ormsbee et al., 2022)), machine learning (Sousa
et al., 2023), and deep learning (Wu et al., 2024). These technologies enhance system reliability, reduce oper-
ational costs, and enable proactive management. However, they inherently depend on real‐time, high‐quality
sensor data (Geelen et al., 2019; Li et al., 2024), making data quality assurance and optimized data trans-
mission frequency critical challenges.

Sensors distributed throughout WDSs collect critical data (e.g., flow rate, pressure, and chlorine levels) every
15 min, providing essential insights into system performance. Because WDSs are dynamic and their states change
continuously over time (Ulanicki & Beaujean, 2021; Wang et al., 2023), real‐time data transmission is essential
for accurate monitoring. In China, advancements in the Internet of Things and smart sensor technology have led to
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the installation of numerous pressure and flow sensors in WDSs. However, due to the large scale of these systems
and the high costs associated with cabling, only a few sensors at key locations are connected to the power grid for
high‐frequency data uploads. Most sensors are battery‐powered (Du et al., 2015). Data transmission consumes
approximately 80% of a sensor's total energy (Anastasi et al., 2009), and frequent uploads increase energy
consumption, necessitating regular battery replacements. This significantly raises the management costs of large
sensor networks. To reduce the frequency of battery replacements, water companies often bundle and transmit
data once or twice a day, which conflicts with the need for real‐time information. Therefore, the primary engi-
neering challenge is to minimize sensor energy consumption while ensuring real‐time data transmission—a
problem that has not yet been explored in WDS sensor networks.

Although real‐time sensor data provide immediate insights into the states of WDSs, uploading every data point to
the cloud is unnecessary. Many sensor readings exhibit low variability due to consistent water usage patterns and
fixed network structures, resulting in regular state data at each node. Studies have shown that WDS state data are
predictable rather than entirely random (Truong et al., 2024; Zhou et al., 2023). Recognizing that most sensor data
points can be estimated, this paper proposes a sensor scheduling strategy that involves developing a predictive
model for each sensor on the cloud platform and sharing it with the sensors. Sensors use this model to forecast
multiple future data points and compare these estimates with actual measurements. If the error is within a pre-
defined threshold, the sensor skips data transmission, and the cloud uses the estimated value as the actual
measurement. If the error exceeds the threshold, the sensor uploads the actual value. This approach replaces
highly regular and minimally fluctuating data points with predicted values, significantly reducing data trans-
missions and conserving energy while maintaining accurate WDS state information. Although the aforemen-
tioned sensor scheduling strategy holds significant energy‐saving potential, its practical application effect is
affected by the accuracy of data prediction. Improving prediction accuracy helps reduce the frequency of data
uploads and conserve energy. Therefore, data prediction accuracy is another research focus that requires attention.

Water distribution systems possess unique characteristics that enhance the accuracy of sensor data prediction.
Consistent daily water usage patterns cause periodic fluctuations and introduce temporal correlations in the state
data (Huang et al., 2018). The interconnected nature of WDSs leads to strong spatial correlations among the states
of different nodes (Li et al., 2021). Leveraging these spatiotemporal correlations involves integrating periodic
historical data and exploiting redundancies among correlated sensors, which aids in accurate predictions.
However, the dynamic nature of WDSs also introduces noise and outliers into the data, hindering prediction
accuracy. By applying noise reduction techniques or time‐series decomposition, these adverse effects can be
mitigated, improving the reliability of data estimation (Morales et al., 2021; Shao et al., 2024). Enhancing pre-
diction accuracy through these methods allows the proposed sensor scheduling strategy to achieve greater energy
savings while maintaining precise system monitoring.

To implement this strategy, this paper addressed the challenges of high energy consumption and maintenance
costs in wireless sensor networks within WDSs, along with the noise and spatiotemporal correlations inherent in
WDS data. Spatially related sensors were grouped using k‐medoid clustering. Sensor readings were denoised
using low‐pass (LP) filtering, and periodic components were removed through time‐series decomposition to
improve data quality. A multi‐step estimation model for each sensor group was then developed using Long Short‐
TermMemory (LSTM) neural networks within a cloud‐based platform. The trained LSTMmodels were deployed
on both cloud and edge devices. Sensors compared the predicted values with actual measurements; if the dif-
ference was below a predefined threshold, data transmission was skipped, conserving energy. When the differ-
ence exceeded the threshold, actual measured data were sent to the cloud to maintain data accuracy.

To address the challenge of high energy consumption associated with sensor data uploads in WDSs (an issue that
prevents real‐time monitoring), this study proposes a sensor scheduling methodology that reduces the frequency
of data uploads, thereby conserving energy. The key innovations of this work are as follows: (a) An edge
computing framework is proposed, which enables energy‐efficient sensor scheduling by deploying sensor data
prediction models on sensor devices to determine whether communication and uploads are necessary; (b) A
sensor data prediction model that leverages the redundancy of WDS monitoring data to enhance data prediction
accuracy is developed. This improved accuracy further reduces the number of required communication uploads,
ultimately achieving sensor energy conservation. Testing on a real network data set demonstrated that this method
can reduce sensor energy consumption by up to 75%, substantially lowering energy use while maintaining real‐
time data transmission.
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2. Methodology
2.1. Design of Sensor Scheduling Strategy

As illustrated in Figure 1, the WDS sensor network consists of two main components: the cloud side and the edge
side. The cloud side serves as the central data processing unit, equipped with robust computing, analytical, and
storage capabilities. In contrast, the edge side comprises smart sensors with limited data analysis and storage
capacity, capable of basic data processing and simple decision‐making. Edge‐side sensors collect data and
transmit it to the cloud side via 4G/5G cellular networks. These sensors are typically battery‐powered, and data
uploads to the cloud account for 80% of their total energy consumption.

To conserve sensor energy while maintaining real‐time data acquisition, this study proposes an edge computing‐
based sensor scheduling strategy. As shown in Figure 1, this strategy comprises two components: a cloud‐side
strategy and an edge‐side strategy. The cloud side receives data from the edge side and uses it to train a pre-
dictive model, which is then transmitted back to the edge side via the wireless sensor network. The edge side
collects data at fixed intervals in real time and stores it locally. Simultaneously, it uses the received predictive
model to estimate data at each time step. The collected data are compared with the estimated values; if the de-
viation exceeds a predefined threshold, the locally stored data are packaged and uploaded to the cloud side,
followed by clearing the local memory. If the deviation is within the threshold, the data are not uploaded.
Additionally, when memory usage reaches a specified limit, the stored data are packaged and uploaded, and the
local memory is cleared. Upon receiving new data from the edge side, the cloud side retrains and updates the
predictive model and sends it back to the edge side.

2.2. Sensor Data Prediction

Accurately predicting sensor data is a crucial step in the proposed sensor scheduling strategy. Improved prediction
increases the number of data points with low prediction errors, reducing the frequency of data uploads and
conserving energy. Sensor data prediction relies on identifying redundancies in the data, which can be temporal or
spatial. Temporal redundancy arises from regular, periodic fluctuations due to consistent water usage patterns.
Spatial redundancy results from correlations between nearby sensors that tend to produce similar data. These
redundancies are leveraged through clustering analysis to enhance prediction accuracy.

Figure 1. Edge computing‐based data transmission mechanism.
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However, irregular noise and unstable fluctuations can negatively affect predictive model performance. To
mitigate these issues, noise reduction and time‐series decomposition techniques were applied to the sensor data
after grouping the sensors, aiming to enhance data stability and improve predictability. Additionally, an attention
mechanism was incorporated after the LSTM model to assign different weights to sensor inputs at various time
steps, optimizing the use of temporal redundancy.

2.2.1. Sensor Grouping

Sensors closer in hydraulic distance typically exhibit stronger data correlations (Gomes et al., 2021). To exploit
this spatial correlation for improved sensor data prediction, a clustering algorithm was employed to group sensors
with strong internal correlations. Data from sensors within the same group were then jointly used as inputs for the
prediction algorithm.

In this study, the k‐medoid algorithm was utilized as the method for grouping sensors (Li et al., 2023). Unlike
clustering techniques that use averaged values as centers, k‐medoid selects actual data points, called medoids, to
serve as cluster centers. The algorithm begins by randomly choosing K data points as initial medoids. Each sensor
is then assigned to the nearest medoid, forming clusters. For each cluster, the medoid is updated by selecting the
data point that minimizes the total distance to all other points within that cluster. This iterative process of
reassigning sensors and updating medoids continues until the medoids stabilize. A key advantage of the k‐medoid
algorithm is its robustness against outliers and noise (Modak, 2024), making it particularly effective for clustering
sensors in WDSs (Shao et al., 2024).

An essential aspect of the k‐medoid algorithm is selecting an appropriate distance metric between data points.
Sensor time series used for clustering are often long, resulting in high‐dimensional data that make direct
computation of Euclidean distances impractical due to the “curse of dimensionality” (Cai et al., 2005). To address
this issue, a distance metric based on the Pearson correlation coefficient is employed. Specifically, the distance
between two sensor time series is defined as one minus their Pearson correlation coefficient:

corr(x1,x2) =
cov(x1,x2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(x1)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(x2)

√ (1)

disti,j = 1 − corr(x1,x2) (2)

where, x1, x2 represent the sensor time series, cov(x1,x2) denotes the covariance between them, and var(x1)and var
(x2) are their variances.

Using this distance metric, the k‐medoid algorithm is formulated as the following optimization problem:

min :∑
n

i=1
∑
n

j=1
disti,jzi,j (3)

∑
n

i=1
zi,j = 1, j = 1,2,… ,n (4)

zi,j ≤ yi, i = 1,2,… ,n (5)

∑
n

i=1
yi = k (6)

yi, zi,j ∈ {0,1}, i, j = 1,2,… ,n (7)

where, n denotes the number of sensors, k represents the total number of clusters, zi,j is a binary variable indicating
whether sensor j is assigned to the cluster with medoid i, and yi is a binary variable indicating whether sensor i is
selected as a medoid (cluster center).

The objective function in Equation 3 minimizes the total distance between sensors and their assigned medoids,
effectively clustering together sensors with strong correlations. Equation 4 ensures that each sensor is assigned to
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exactly one cluster, while Equation 5 enforces that a sensor can only be assigned to a cluster if that cluster's
medoid exists. Equation 6 specifies that exactly k medoids are selected, corresponding to the desired number of
clusters. By clustering highly correlated sensors using the k‐medoid algorithm with this distance metric, the
predictive performance within each cluster is enhanced.

2.2.2. Noise Removal and Time‐Series Decomposition

High‐quality sensor data is crucial for accurate prediction, as significant noise can greatly diminish the predictive
performance of models. Sensor data noise can generally be classified into two types: outliers and random noise.
To address these issues, the Z‐score method was first applied to eliminate outliers, followed by the use of LP filter
to remove random noise. The Z‐score method is defined as:

Z =
x − μ
σ

(8)

where x represents a data point, μ denotes the mean value of the sensor data, and σ is the standard deviation.

LP filtering, widely used in image and audio processing, has also proven effective in removing noise from WDS
pressure sensor data (Shao et al., 2024). This method operates under the assumption that the true signal primarily
contains low‐frequency components, while noise is predominantly composed of high‐frequency components. By
allowing low‐frequency signals to pass and attenuating high‐frequency signals, noise can be reduced while
retaining essential information in the signal (Bornoiu & Grigore, 2013; Lee et al., 2019). In this study, the sensor
time series were first transformed into the frequency domain using the Fourier transform. Amplitudes of signals
exceeding the cutoff frequency were set to zero, effectively removing high‐frequency components. The filtered
signal was then transformed back to the time domain using the inverse Fourier transform.

After filtering, the sensor data often remain non‐stationary, which can negatively affect prediction accuracy. To
address this issue, the filtered sensor data are decomposed into three components: a trend component, a seasonal
component, and a residual component (Oliveira et al., 2017), as shown in Equation 9. The seasonal component
represents periodic variations over fixed intervals, the trend component captures long‐term patterns, and the
residual component reflects noise and irregular fluctuations.

To enhance prediction accuracy, the trend and residual components are combined into a new time series that
serves as input to the LSTMmodel, as shown in Equation 10. The LSTMmodel is trained to predict this combined
trend‐residual series. The trained model forecasts the trend and residual components, which are then added
together to form the predicted trend‐residual series. Finally, this predicted series is combined with the original
seasonal component to generate the predicted sensor data.

Yt = Tt + St + Rt (9)

SRt = St + Rt (10)

where Yt represents the original sensor data at time t; Tt, St, and Rt denote the trend, seasonal, and residual
components, respectively. SRt is the combined trend‐residual series.

2.2.3. LSTM Model With Attention Mechanism

The trend‐residual series SRt for each sensor in a group are combined to form a multidimensional time series,
which is then used as input to train the LSTM model. The model predicts the trend‐residual series for all sensors,
and this predicted series is subsequently combined with the original seasonal component to generate the predicted
sensor data.

The LSTM network, a specialized type of recurrent neural network (RNN), is designed to capture long‐term
dependencies in sequential data (Hochreiter & Schmidhuber, 1997). Compared to traditional RNNs, LSTM
networks are better at preserving memory over time and mitigating the vanishing gradient problem. These ad-
vantages make LSTM particularly effective for time series forecasting and have led to its widespread use inWDSs
in recent years (Fan et al., 2023; Kühnert et al., 2021; McMillan et al., 2023). Like traditional RNNs, LSTM
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models are composed of a chain of “cells,” each containing three gates: an input gate, a forget gate, and an output
gate. These gates regulate the flow of information through the network.

In time series forecasting, it is often assumed that each input data point at a given time step holds equal
importance. However, this assumption may not be accurate, as the significance of data points can vary across time
steps. To address this issue and improve prediction accuracy, an attention mechanism is incorporated that allows
the LSTM model to assign different weights to data points at each time step. This enables the model to focus on
more important information. The attention mechanism operates by calculating the correlation between the hidden
states at each time step and adjusting the weights of each input accordingly. The process is outlined as follows:

Given a time series x= (x1,x2,…,xT), the attention mechanism computes the correlation between the hidden states
of previous time steps and the current hidden state. For the current time stept, the correlation between each
previous hidden state hj( j = 1,2,…,t − 1) and the current hidden state ht is calculated using an attention score
function α:

etj = α(ht,hj) (11)

where, etj represents the unnormalized attention score between ht and hj.

To determine the relative importance of each previous hidden state, the scores are normalized using the softmax
function:

βtj =
exp(etj)

∑t− 1
jʹ=1 exp(etjʹ )

(12)

where βtj is the attention weight assigned to each hidden state.

Subsequently, each previous hidden state hj is multiplied by its corresponding attention weight βtj and the
weighted states are summed to obtain the context vector ct for the current time step:

ct =∑
t− 1
j=1 βtjhj (13)

Finally, the context vector is concatenated with the current hidden state ht to produce the final output.

ĥt = [ht; ct] (14)

In this study, a two‐layer LSTM model is employed, followed by a two‐layer attention mechanism. The model is
trained using a backpropagation algorithm with a Mean Squared Error (MSE) loss function and the Adam
optimizer to compute and update the model parameters.

3. Application
The proposed sensor scheduling strategy was applied to a realistic large‐scale WDS using field‐measured data. As
depicted in Figure 2, this network consists of three reservoirs, 4,841 pipes, and 4,242 nodes. Forty‐four pressure
sensors were installed throughout the network, with their locations indicated in the figure. These sensors collected
pressure readings at 15‐min intervals from 1 February 2020, to 30 April 2020, resulting in 8,640 samples per
sensor. The collected data served as the basis for implementing and evaluating the proposed method.

3.1. Proficiency Metric

To assess the performance of the scheduling algorithm, the historical data was backtracked to reconstruct the
process of sensor data acquisition and upload. Since the actual monitoring data for all sensors are available, the
estimated values from the scheduling algorithm were compared with the measured values to evaluate the accuracy
of the estimated sensor data. Additionally, the number of data uploads for each sensor was recorded after the
application of the scheduling algorithm and compared with the original upload frequency to assess the energy‐
saving performance of the algorithm.
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The accuracy of the estimation is evaluated using the Root Mean Square Error (RMSE), calculated as follows:

RMSE(y, ŷ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

i=1
(yi − ŷi)

2
√

(15)

where yi represents the measured value, ŷi denotes the predicted value, andn is the number of data points.

To evaluate the energy‐saving effectiveness, the Energy Saving Rate (ESR) is calculated, which compares the
number of uploads with and without the scheduling method. The ESR is given by:

ESR =
UTscheduling
UToriginal

(16)

where UTscheduling refers to the number of uploads with the scheduling method, and UToriginal represents the
number of uploads without it.

3.2. Sensor Grouping and Data Processing

To group the sensor data, the k‐medoids algorithm was applied, effectively clustering sensors based on their data
correlations in the WDS. As shown in Figure 2, the sensors were divided into four distinct groups, with clearly
defined boundaries and a compact distribution within each group. In this study, all sensor data were categorized
into these four groups. By enhancing the predictive accuracy of the LSTMmodel, sensor grouping contributes to a
lower ESR, as evidenced by the comparative data in Tables S3 and S4 of Supporting Information S1.

Following the clustering, the Z‐score method and LP filtering were used to remove outliers and random noise
from the data of the 44 sensors. The Z‐score was set to 3 based on the standard three‐sigma rule to identify
outliers. For noise reduction, the LP filter cutoff frequency was optimized through trial and error and set to 0.6
times the Nyquist frequency (0.6 × 2 samples per hour). To simplify the analysis, data from one sensor,

Figure 2. Layout of the case network.
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#CLD0034, were selected for detailed review. Figure 3a shows the sensor data before (blue line) and after (orange
line) noise removal. The denoised data closely match the field measurements while appearing smoother. The
applied denoising technique effectively removed outliers (represented as green pentagrams) and random noise.

Next, Locally Weighted Regression (LWR) was applied to decompose the denoised sensor data. Figures 3b–3d
present the results of the decomposition for sensor #CLD0034, breaking the data into three components: trend,
seasonal, and residual. The seasonal component, which exhibited a consistent pattern, was removed from the data
estimation process. The trend and residual components were then combined and used for estimating the sensor
data. The denoising and time‐series decomposition results for the representative sensors from the three additional
groups are provided in Figures S1–S3 of Supporting Information S1.

Figure 3. Denoising and time series decomposition of data for sensor #CLD0034: (a) Measured and denoised data; (b) Trend component from the decomposition of the
denoised data; (c) Seasonal component from the decomposition of the denoised data; (d) Residual component from the decomposition of the denoised data.
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3.3. Sensor Energy Saving

The proposed scheduling method is implemented on sensor data that has undergone clustering, denoising, and
decomposition. To evaluate its energy‐saving performance, 45 different scenarios were designed based on
varying estimation steps (ES) and error thresholds (Er). The ES values were set to 2, 3, 4, 5, 6, 12, 24, 48, and 96
steps, and the Er values ranged from 0.1 to 0.5 m. The optimal model parameters and hyperparameter settings for
training are detailed in Tables S1 and S2 of Supporting Information S1.

Figure 4 shows the cumulative probability distribution of the ESR for all sensors after applying the scheduling
method, with the average ESR provided in Table S4 of Supporting Information S1. The results indicate a sig-
nificant reduction in energy consumption. For example, with an ES of 48 steps and an Er of 0.5 m, the average
sensor energy consumption is reduced to 26.3% of the original method. The ESR varies based on different
combinations of ES and Er. Specifically, at a fixed ES, the ESR decreases as the Er increases. This is because more
data points fall below the Er threshold as the Er rises, leading to fewer uploads. Thus, increasing the Er can reduce
data transmission frequency and, consequently, save more energy when the prediction accuracy is not

Figure 4. ESR statistics via ES and Er: (a) ES = 2; (b) ES = 3; (c) ES = 4; (d) ES = 5; (e) ES = 6; (f) ES = 12; (g) ES = 24; (h) ES = 48; (i) ES = 96.
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significantly impacted. For a detailed performance analysis, the spatial distribution of the ESR and the pressure
data from representative sensors (before and after scheduling) are provided in Figures S4–S5 of Supporting
Information S1.

Figure 5 illustrates the relationship between ESR and ES for different Er values (0.1, 0.2, 0.3, 0.4, and 0.5 m). The
graphs consistently show that ESR decreases initially and then increases as ES increases, suggesting an optimal
ESR for maximizing energy savings. For instance, when Er is set to 0.5 m, the optimal point occurs at ES = 48,
where the ESR reaches 0.264. In the proposed sensor scheduling approach, the deviation between predicted and
measured data is always smaller than the Er, which represents an ideal scenario. In this case, the sensor upload
frequency is inversely proportional to the ES. For example, at ES = 48, data is uploaded every 12 hr
(48 × 15 min). This results in lower upload frequencies and greater energy savings as the ES increases. However,
in real‐world applications, longer prediction steps lead to larger deviations between predicted and actual data,
which triggers more uploads and increases energy consumption. Therefore, a practical scheduling system must
strike a balance between prediction accuracy and upload frequency to avoid excessive uploads caused by large
prediction errors, ultimately minimizing energy consumption.

3.4. Sensor Data Quality

The previous section demonstrated that the proposed scheduling method effectively reduces sensor data upload
frequency, conserving energy. However, this approach may lead to a decrease in data accuracy at the cloud. To
assess the impact of this method on data accuracy, a statistical analysis was performed comparing the sensor data
obtained through the scheduling method with the actual monitoring data. As shown in Figure 6, the proposed
scheduling method delivers high data accuracy across different ES and Er, with the average RMSE provided in
Table S5 of Supporting Information S1. In the worst‐case scenario, with an ES of 96 steps and an Er of 0.5 m, the
mean RMSE between the sensor data and actual monitoring data is 0.21, corresponding to a relative error of only
0.7% (relative to the average pressure). This error is well within an acceptable range. How data accuracy varies
with different ESs and Ers was also examined. When ES is fixed, data accuracy decreases as Er increases. This is
because a higher Er excludes more data points from transmission, leading to a higher number of errors in the
scheduled data. On the other hand, when Er is fixed, data accuracy does not change significantly as ES increases.
This is due to the similar number of data points exceeding the Er at different ESs, as shown in Figure 4, resulting in
negligible differences in data accuracy.

Figure 5. Average ESR of sensors at varying Er and ESs.
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3.5. Performance Under Optimal Conditions

Sections 3.3 and 3.4 have systematically evaluated the ESR and data accuracy of the proposed method under 45
operational scenarios. By optimizing the average ESR, the optimal ES (48) and Er (0.5 m) were determined. This
section further analyzes the performance under these optimal conditions. As shown in Figure 7, under the optimal
parameter combination, the ESR of individual sensors ranges from 0.12 to 0.33, with a mean value of 0.26. This
indicates that the proposed scheduling algorithm achieves a 74% reduction in the number of data transmissions on
average, demonstrating significant energy conservation. In terms of data accuracy, when Er is set to 0.5 m, the
RMSE between the scheduled data and the original data varies between 0.18 and 0.22, with an average of 0.21,
corresponding to a mean relative error of 0.7%. Therefore, the proposed sensor scheduling method effectively
reduces energy consumption while maintaining data accuracy.

Figure 6. Data accuracy of the sensors after applying the scheduling method: (a) ES of 2; (b) ES of 3; (c) ES of 4; (d) ES of 5; (e) ES of 6; (f) ES of 12; (g) ES of 24; (h) ES
of 48; (i) ES of 96.
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4. Discussion
The energy consumption of sensors in WDSs presents a significant challenge to achieving real‐time data uploads.
To address this challenge, an edge computing‐based sensor scheduling method was developed, aimed at reducing
energy usage without compromising data accuracy. The proposed approach leverages predictive models to
decrease the frequency of data uploads. By setting a predefined Er, the system determines whether the measured
data deviates sufficiently from the predicted values to warrant an upload. This strategy effectively balances
energy conservation with the need for accurate and timely data, ensuring reliable monitoring of the WDS.

The effectiveness of the sensor scheduling method in saving energy is influenced by both the Er and the accuracy
of the predictions. A higher Er allows for more tolerance in prediction errors, resulting in fewer data uploads and
greater energy savings. However, maintaining high prediction accuracy is crucial for minimizing erroneous data
points. The proposed method enhances prediction accuracy through several mechanisms: clustering sensors based
on spatial correlations, applying noise reduction techniques, utilizing robust prediction algorithms, and opti-
mizing the prediction step size. By grouping sensors with high spatial correlation, spatiotemporal redundancies
are exploited to improve the reliability of predictions. Additionally, the redundancy in historical data further
supports accurate future predictions. These combined efforts significantly reduce the number of uploads triggered
by prediction errors, thereby conserving sensor energy.

The ES plays a critical role in the sensor scheduling process. Ideally, increasing the ES reduces the frequency of
data uploads, leading to lower energy consumption. However, in practical applications, a larger ES can decrease
prediction accuracy, resulting in more frequent uploads when deviations exceed the Er. Therefore, selecting an
appropriate ES is essential to balance energy savings and data accuracy. Moreover, a higher ES means more
predicted steps must be stored and processed by the edge device, which typically has limited storage and
computational resources. This constraint necessitates careful consideration of the ES during the design of the
sensor scheduling system to ensure both efficiency and practicality.

This study utilizes Er to decide when data should be uploaded. The trigger threshold represents the allowable
deviation between predicted and actual sensor data. Significant deviations, such as those caused by data failures or
emergencies like pipe bursts, will exceed the Er and prompt data uploads. An important area for future research is
the ability to distinguish between random data faults and critical pipe network events at the edge. By effectively
filtering out random noise and only uploading data related to significant events, the system can further optimize
energy savings while ensuring that critical incidents are promptly detected and addressed. This capability would
enhance the robustness and reliability of the sensor scheduling method in real‐world WDS applications.

In the proposed method, employing a model at the sensor side for data prediction inevitably introduces additional
energy consumption. However, during the data acquisition process, data transmission accounts for nearly 80% of
the total energy consumption (Anastasi et al., 2009). In contrast, the computational cost of running the predictive
model at the edge is negligible. Previous studies have shown that the use of various models at the edge, including
LSTM (Mohanty et al., 2020), CNN (Cheng et al., 2019), Seq2Seq (Morales et al., 2021), combined models (Jain

Figure 7. Performance evaluation under an ES of 48 and an Er of 0.5 m: (a) ESR; (b) RMSE.
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et al., 2022), and even complex architectures (Njoya et al., 2022), results in energy consumption that is sub-
stantially lower than communication. The developed method is therefore considered highly effective for practical
applications.

The spatiotemporal redundancy in WDSs provides the basis for achieving sensor energy savings with the pro-
posed method. Leveraging this redundancy, an alternative approach could involve reducing sensor density while
increasing the battery capacity of each sensor. However, this approach has certain limitations. First, reducing
sensor density may compromise system resilience, as redundancy ensures that sufficient state information can still
be obtained even if some sensors fail. Second, increasing battery capacity faces practical constraints. The
specifications of installed sensors are often fixed and cannot be modified. In addition, sensors are typically
installed in confined spaces such as valve chambers, where limited room for maintenance activities makes the
installation of larger‐capacity batteries challenging.

In the process of developing the sensor scheduling method, this study leveraged the spatiotemporal redundancy of
sensor data within the WDS, establishing a unique connection between the proposed method and the system.
However, it is recognized that the primary focus of this study is the data itself, rather than theWDS, which implies
that the method may also be applicable to wireless sensor networks in other systems. Nevertheless, this study
provides a sufficient case to demonstrate how energy savings in sensors can be achieved while maintaining data
accuracy under conditions of data redundancy. Future work will further explore how the proposed sensor
scheduling method can continue to function effectively under specific WDS conditions, such as pipe bursts, valve
switching, and significant fluctuations in water consumption, thereby strengthening the connection between the
method and the system.

In summary, the edge computing‐based sensor scheduling method offers a promising solution to reduce sensor
energy consumption while maintaining high data accuracy inWDSs. By carefully balancing the Er and ES, and by
leveraging spatiotemporal redundancies, the method achieves significant energy savings without sacrificing the
reliability of the monitoring system. Future enhancements, such as advanced fault detection mechanisms, will
further strengthen the effectiveness and applicability of this approach in diverse and dynamic water distribution
environments.

5. Conclusions
Sensors inWDSs often rely on battery power, which limits their operational lifespan due to energy constraints. To
prolong sensor service life without reducing data upload frequency, this research addresses the critical challenge
of minimizing sensor energy consumption while maintaining high data accuracy. By developing advanced sensor
scheduling methods, this study aims to support efficient WDS operations that require real‐time data monitoring in
increasingly complex urban infrastructures.

This study introduced an edge computing‐based sensor scheduling method that optimizes data upload frequency
by leveraging predictive models and predefined Er. This strategy reduces the need for frequent data transmissions,
thereby conserving sensor energy without compromising data quality. By clustering sensors based on spatial
correlations, inherent spatial redundancy is exploited, enhancing prediction accuracy as collective data from
grouped sensors provide a more reliable basis for forecasting. Additionally, integrating time redundancy through
historical data allows the proposed method to capture consistent temporal patterns, further improving prediction
accuracy. These combined strategies enable accurate estimation of future sensor readings, significantly reducing
the need for frequent data uploads. For data prediction, noise reduction and time‐series decomposition techniques
were applied, and LSTM neural networks with attention mechanisms were utilized for reliable data estimation. In
the case study, the proposed scheduling method achieved up to 75% reduction in sensor energy consumption
while maintaining a mean RMSE of only 0.21, corresponding to a relative error of 0.7%. These results demon-
strate the effectiveness of the proposed approach in balancing energy savings with data reliability, making it a
viable solution for WDSs.

However, the proposed method relies heavily on accurate clustering of sensors and precise prediction models.
Inaccurate clustering or suboptimal predictions can lead to increased data uploads or loss of critical information,
potentially diminishing both energy savings and data reliability. Furthermore, the identification of random faults
and pipe network events such as pipe bursts at the edge devices is also an important research direction. Future
research should focus on enhancing the robustness of clustering algorithms and improving prediction accuracy,
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possibly by integrating advanced validation techniques and adaptive mechanisms to ensure the scheduling
method remains effective under diverse conditions.
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