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Abstract: During the last two decades, the water resources planning and management profession has seen a dramatic increase in the
development and application of various types of evolutionary algorithms (EAs). This observation is especially true for application of
genetic algorithms, arguably the most popular of the several types of EAs. Generally speaking, EAs repeatedly prove to be flexible and
powerful tools in solving an array of complex water resources problems. This paper provides a comprehensive review of state-of-the-art
methods and their applications in the field of water resources planning and management. A primary goal in this ASCE Task Committee
effort is to identify in an organized fashion some of the seminal contributions of EAs in the areas of water distribution systems, urban
drainage and sewer systems, water supply and wastewater treatment, hydrologic and fluvial modeling, groundwater systems, and param-
eter identification. The paper also identifies major challenges and opportunities for the future, including a call to address larger-scale
problems that are wrought with uncertainty and an expanded need for cross fertilization and collaboration among our field’s subdisci-
plines. Evolutionary computation will continue to evolve in the future as we encounter increased problem complexities and uncertainty
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Introduction

Evolutionary computation (EC), a term devised only in the last
two decades, represents a broad spectrum of heuristic approaches
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for simulating evolution (Back et al. 2000). Primary examples
include genetic algorithms (GAs) (Holland 1962; Holland 1975),
evolutionary strategies (ES) (Rechenberg 1973; Schwefel 1981),
evolutionary programming (Fogel et al. 1966), and genetic pro-
gramming (Koza 1992). Collectively referred to as evolutionary
algorithms (EAs), these methods are comprised of algorithms that
operate using a population of alternative solutions or designs,
each represented by a potential decision vector. EAs rely on ran-
domized operators that simulate mutation and recombination to
create new individuals (i.e., solutions) who then compete to sur-
vive via the selection process, which operates according to a
problem-specific fitness function (Back et al. 2000). EA popular-
ity is, at least in part, due to their potential to solve nonlinear,
nonconvex, multimodal, and discrete problems for which deter-
ministic search techniques incur difficulty or fail completely. The
growing complexity and scope of environmental and water re-
sources applications has served to expand EAs’ capabilities. The
objective of this paper is to critically review recent EC applica-
tions and the state-of-the-art, with particular focus on GAs given
their dominant use in the historical literature of the water re-
sources planning and management field. Conceptualized by
ASCE’s Task Committee on Evolutionary Computation in Envi-
ronmental and Water Resources Engineering, this paper contrib-
utes a comprehensive resource for water resources researchers
interested in applying EC and seeks to promote cross fertilization
between the many areas of water related research where EAs are
being applied.

412 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / JULY/AUGUST 2010

Downloaded 18 Jun 2010 to 132.68.129.171. Redistribution subject to ASCE license or copyright. Visihttp://www.ascelibrary.org



Generate initial population of solutions

¥

Evaluate fitness of each solution

!

Selection of individual solutions

v

Mating (reproduction)

!

Mutation

v

New population generated and fitness evaluated

'

Sufficient solution quality No
or maximum search terms reached

i Yes

End

A

Fig. 1. Generalized framework of a GA

Genetic Algorithm

GAs have been the most commonly applied EA within water
resources planning and management literature. Although there is
no universal definition, GAs are characterized by the following
elements: (1) generation of an initial population of potential so-
lutions, each identified as a chromosome; (2) computation of the
objective function value, or fitness metric, of each solution and
subsequent ranking of chromosomes according to this metric; (3)
some aspect of chromosome ranking and selection of candidate
solutions to participate in a mating operator, where information
from two or more parent solutions are combined to create off-
spring solutions; and (4) mutation of each individual offspring to
maintain diversity and prevent premature convergence to local
optima. These elements are repeated in sequential generations
until a suitable solution is obtained. This general framework, il-
lustrated in Fig. 1, lends to the concept that solutions having high
fitness values contain specific genes (or characteristics) that are
important for optimizing the objective function. By mixing im-
portant genes between parent alternatives, it is expected that the
GA will produce some offspring that may attain superior charac-
teristics relative to their parent alternatives. In this way, the algo-
rithm simulates survival of the fittest objective function values,
without requiring derivative information (Back et al. 2000;
Schwefel 1995; Holland 1975; Goldberg 1989). This concept has
provided a foundation for development of numerous other single-
and multiobjective EAs over the last two decades, many of which
will be identified and discussed subsequently herein.

Recent Methodological Advances

Recent methodological advances have served to broaden the
scope of environmental and water resources applications where
EAs can be effectively applied. The advances emphasized herein
focus on EA search innovations that are generally valuable be-
yond a single water resources application area. The next sections

of text are meant to serve two purposes: (1) critically review more
traditional EA operators or methods that are commonly employed
in the literature and (2) provide guidance on promising methods
that have served to increase the size and scope of water resources
problems that can be addressed by EAs.

Advances in Representations, Search Operators, and
Parameterization

The two broad classes of EA operators consist of (1) selection
schemes and (2) variational schemes (e.g., mating and mutation).
In combination, these operators serve to generate and explore new
candidate solutions that must compete to survive (i.e., attain a
population slot) within the evolution analogy. There is a broad
array of selection and variational operators available and users
should carefully select algorithm operators best suited to the prop-
erties and goals of their application. It is important for a user to
understand the appropriateness, benefits, and limits of the EA
operators they employ.

EA Operators: Bridging Genetic Algorithms and
Evolutionary Strategies

To date, the most familiar selection operators available in com-
mon GA codes include variants of tournament selection, trunca-
tion selection, roulette wheel selection, and Boltzmann selection.
In terms of broader EA development, most modern codes imple-
ment a form of tournament and/or truncation selection because
these selection schemes are scaling invariant and when used in
combination, they are implicitly elitist (i.e., the best population
members are guaranteed to survive into the next generation). Elit-
ism and scaling invariance (i.e., independence from the fitness
function’s range) are important properties that have been shown
to enhance the effectiveness of EAs in water resources applica-
tions (Reed et al. 2000a; Yoon and Shoemaker 2001; Bayer and
Finkel 2004). Although roulette wheel selection (or other stochas-
tic proportionate schemes) has been applied in many early water
resources applications, this method has significant limitations. Fit-
ness scaling can have severe impacts on roulette wheel selection
through two mechanisms: (1) a single supersolution (which often
occurs for applications using constraint violation penalties) domi-
nates the probabilities of selection causing premature conver-
gence and (2) late generation solutions with very similar fitness
values yield nearly identical selection probabilities that cause
search to drift randomly or stall. In general, it is recommended to
avoid roulette wheel selection. Boltzmann selection has been used
successfully in a variety of water resources applications (Dough-
erty and Marryott 1991; Karpouzos et al. 2001; Shieh and Peralta
2005) and represents an interesting mixture of concepts from EA
literature with the basic sampling scheme used in simulated an-
nealing (SA) (Kirkpatrick et al. 1983). The method has well es-
tablished theoretical proofs of convergence, but should be
implemented carefully to avoid parametric sensitivities (i.e.,
specifying distribution parameters to sufficiently slow the search
to avoid premature convergence).

The discussion of Boltzmann selection is an excellent transi-
tion point to provide some historical context on decision variable
representations as well as the importance of representation on
mating/mutation operator choices. Historically, two algorithm
classes—GAs and ES—were developed independently until 1991
when a joint conference between the communities sought to col-
laborate under the term “Genetic and Evolutionary Computation.”
The early developments of GAs and ESs were shaped by their
respective representations—binary strings for GAs and real-
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valued continuous variables for ESs. Early work in the water
resources area (Wang 1991; McKinney and Lin 1994; Ritzel et al.
1994) focused largely on the binary GA framework as dissemi-
nated in large part by the often-cited text by Goldberg (1989).
Early applications of real-valued representations of water re-
sources optimization problems were largely associated with SA
applications (Dougherty and Marryott 1991) or shuffle-complex
evolution (SCE) applications (Duan et al. 1992). These algorithms
are conceptually similar to early ESs developed in the 1960s as
described by Schwefel (1995). SA is a (1+1)-ES modified to use
Boltzmann selection, while SCE is a real-valued ES that modifies
the traditional Gaussian noise search step with cluster-based ex-
ploration.

Recent water resources applications demonstrating the use and
efficiency of ESs demonstrate the importance of real-valued
mating/mutation operators in water resources applications when
focusing on continuous or mixed integer optimization (Yoon and
Shoemaker 2001; Vrugt et al. 2003b; Bayer and Finkel 2004;
Reed and Yamaguchi 2004b; Bekele and Nicklow 2005; Kollat
and Reed 2006; Tang et al. 2006). Mating and mutation ap-
proaches are largely shaped by how decision variables are en-
coded in an EA: (1) binary vectors; (2) integer vectors; (3) real-
coded vectors; or (4) mixed integer/real vectors. The distinction
between mating and mutation operators is defined principally on
the number of individuals used to generate new solutions. Muta-
tion is a “unary” operator, as defined by Back et al. (2000), where
a single solution is perturbed to generate new candidate solutions;
whereas, mating involves the transformation of two or more indi-
viduals into new candidate solutions. In binary GA applications,
jump mutation is the most common local search operator em-
ployed, in which bits in a design’s binary string are randomly
changed from 1 to O or vice versa based on a user-specified prob-
ability. Alternatively, Schwefel (1995) highlighted that for real-
coded ES algorithms, Gaussian mutation is the most common
operator that has been employed, in which a single individual
composed of a vector of real values is used to generate new
solutions by adding normally distributed perturbations to the de-
cision variables.

In the context of mating operators, there are a wide range of
alternatives available depending on the representation used in an
algorithm. In binary GA applications, theoretical work (Geiringer
1944; Thierens et al. 1998; Back et al. 2000) has highlighted that
uniform crossover is often preferred because it exerts more
“search pressure” to explore new regions of an application’s de-
cision space. Uniform crossover combines the strings of two bi-
nary parent strings, whereby the parents swap bits at each binary
digit (or gene) with a user-specified probability. In the case of
real-coded representations, there are two classes of mating opera-
tors that are common: (1) crossover and (2) intermediate recom-
bination. Crossover is analogous to binary string mating schemes
where parent variables are swapped with a user-specified prob-
ability (e.g., see Storn and Price 1997). Intermediate recombina-
tion is far more commonly employed for real-valued or mixed
integer formulations due to its historical origin in the ES literature
(Schwefel 1995). Intermediate recombination blends multiple
real-valued parent vectors using a variety of statistical averaging
and decision variable perturbation schemes. Current state-of-the-
art for real-valued intermediate recombination strategies include
simulated-binary crossover (SBX, Deb and Agrawal 1995),
parentcentric crossover (PCX, Deb et al. 2002), and self-adaptive
weighted recombination (Hansen and Ostermeier 2001; Hansen et
al. 2003). Although it is beyond the scope of this paper to provide
a detailed discussion of these operators, emerging applications of

these tools in water resources applications show that they poten-
tially outperform binary-coded crossover and can enhance search
efficiency even for binary decisions (Yoon and Shoemaker 2001;
Bayer and Finkel 2004; Kollat and Reed 2006).

Parameterization and Evaluation

The preceding text highlights the first and potentially most chal-
lenging decision users must face when using EAs: what operators
are appropriate and effective? Once operators have been selected,
another important challenge lies in specifying the parameters that
control an EA’s search (e.g., population size, run length, probabil-
ity of mating, probability of mutation, etc.). Within the water
resources literature, Aly and Peralta (1999a,b) clearly demon-
strated the importance and challenge posed by identifying robust
search operator parameters given the constraints of computation-
ally intensive applications. Reed et al. (2000a) proposed a three-
step methodology for parameterizing binary-coded GAs assuming
the use of tournament selection, uniform crossover, and jump mu-
tation. Although the parameterization methodology proposed fo-
cuses on theoretical population-sizing equations that are difficult
to translate to water resources contexts, the study does highlight
several important issues EA users need to consider regardless of
the type of EC algorithm used: (1) EAs are stochastic and users
need to design applications to minimize random seed variability
(i.e., attain similar results regardless of the randomly generated
initial search population); (2) frequent increases in population
size can improve the reliability of search for a single random
seed; (3) run duration should grow proportionally to the number
of decision variables being searched; and (4) the average compu-
tational time for design evaluations should guide population size
and run duration decisions.

More recent studies have used, improved, or presented alter-
natives to the methodology proposed by Reed et al. (2000a) for
real or binary-coded EAs in single and multiobjective contexts
(Reed et al. 2003; Gibbs et al. 2008; Bayer and Finkel 2004; Reed
and Yamaguchi 2004b; Bekele and Nicklow 2005; Espinoza et al.
2005; Kollat and Reed 2006). Overall these studies present useful
suggestions for parameterizing a variety of real or binary-coded
mating and mutation operators. Several of the studies show that
preconditioning search (i.e., injecting known good solutions)
yields a significant benefit to search efficiency and reliability.
These studies use a series of connected runs where initial small
population sizes are exploited with small computational costs to
generate initial search results. The initial search results are then
injected into larger populations until the best solution’s quality
does not improve significantly or a user-specified computational
limit is reached. When computational limits are small, there have
been studies in the EC literature that have shown that using an
initially large population size and reducing the population with
search progress can also be beneficial (e.g., see Pelikan 2002). It
should, however, be noted that there is a trade-off between the
time for evolution and size of the population. When a problem has
nontrivial evaluation times, a very limited number of search gen-
erations evolved at a large population size can consume signifi-
cant computational time. Overall, it is important when using EAs
to have a carefully designed computational experiment with a
clear rationale for the representation, operators, and parameters
being used as well as a clear framework for assessing search
performance.

Computational Search Enhancements

The growing range of water resources problems where EAs are
being applied has necessitated advances in the algorithms’ search
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capabilities as well as techniques for reducing their computational
demands. The water resources domain requires EAs to navigate
highly nonlinear problem spaces that are often constrained and
may require a suite of performance objectives. Evaluation of
water resources objectives is often done using conceptual, physi-
cal, or statistical simulation frameworks with significant compu-
tational costs, as well as forecasting uncertainties.

Constrained Optimization and Global-Local Hybrid Search

Constraints highly complicate the topology of search spaces,
making it more challenging for EAs to reliably identify near-
optimal or optimal solutions. Constrained decision spaces are
commonly poorly scaled (typified by a very high fitness vari-
ance), multimodal, and potentially discontinuous (Chan Hilton
and Culver 2000; Cai et al. 2001; Yu and Harrell 2004; Espinoza
et al. 2005; Espinoza and Minsker 2006a). These challenges often
motivate the use of EAs by themselves or in combination with
some form of local search (i.e., hybrid algorithmic implementa-
tions). There are a range of approaches for constraint handling in
modern EAs including (1) penalty functions; (2) repair or local
search operators; (3) modified mating/mutation operators that pre-
serve constraints; and (4) multiobjective formulations where con-
straints are reformulated as objectives (Back et al. 2000). Note
that these methods can be implemented independently or jointly.

Penalty functions are the most common approach used in
water resources applications to account for constraints. Penalty
functions typically increase a design’s objective function value
(assuming minimization) either by an additive or multiplicative
factor that varies with the degree with which constraints have
been violated. In general, the best methods are often those that do
not severely impact the scaling of a decision space (this can be
quantified through the variance of the population’s fitness), pro-
mote competition between infeasible solutions, and limit the
amount of trial-and-error analysis required in implementation
(Goldberg 1989; Chan Hilton and Culver 2000; Yu and Harrell
2004).

Repair or local search operators are often termed hybrid algo-
rithms in the water resources literature where EAs are combined
with other optimization techniques that can rapidly improve solu-
tion quality in a localized region of a problem’s decision space or
“repair” infeasible solutions by identifying the nearest feasible
point (Cai et al. 2001; Huang et al. 2002; Kapelan et al. 2003a;
van Zyl et al. 2004; Espinoza et al. 2005; Mahinthakumar and
Sayeed 2005; Shieh and Peralta 2005; Espinoza and Minsker
2006a). Often in these studies, hybrid search is motivated in the
context of improving the probability of identifying solutions that
are globally optimal. It is important to consider the benefits of
hybrid search for multimodal spaces (or spaces with multiple op-
tima), which commonly result from the enforcement of nonlinear
constraints using techniques such as penalty functions.

A special type of hybrid algorithms in water resources appli-
cations has been reported by Jourdan et al. (2006), where evolu-
tionary search was integrated with machine learning techniques to
limit the number of expensive function evaluations. The method-
ology uses the learnable evolution model (LEM) (Michalski
2000), which integrates a symbolic learning component within the
EA framework. As the search progresses, the symbolic learning
component exploits either all of the solutions previously found or
a selection of them to classify them as good or bad samples. A set
of induction rules is then obtained from the classifier and are used
to modify the child solutions generated by the evolutionary
search. Jourdan et al. (2006) developed leornable evolution
model-multiobjective (LEMMO), a multiobjective version of

LEM, and applied it to a benchmark water distribution design
problem, while di Pierro et al. (2009) compared its performance
on a number of real water distribution networks. They concluded
that LEMMO represents a promising way forward to solve com-
plex network design problems when time or financial consider-
ations allow for a limited number of function evaluations to be
performed.

In the EA literature, there is a large array of applications that
have very strict feasibility constraints on solution representations
where the mating and/or mating operators are modified such that
each child produced is guaranteed to be feasible. In fact, outside
of the water resources domain, the development of specialized
mating/mutation operators is one of the most commonly em-
ployed constraint management techniques (Back et al. 2000). A
classic example is the traveling salesman problem where each
potential trip is encoded as a unique series of integers. Although
the current water resources literature does not have a significant
number of EA applications where heavily restricted combinatorial
representations are required, problem classes such as the traveling
salesman are important for scheduling or dynamic management
strategies that could be helpful in a range of water resources
applications (reservoirs, distribution systems, water supply, water
security, etc.). For example, work by Savic and Walters (1995a)
that focused on pressure regulation in water distribution networks
used special chromosome representation to ensure that only con-
nected network layouts are used in the search. This was an im-
portant element of the work since only one in 10,000 randomly
generated layouts resulted in a connected network. The last con-
straint handling technique commonly employed is the reformula-
tion of constraints as objectives and the use of EAs in a
multiobjective optimization context as described in the next sec-
tion.

Multiobjective Optimization Developments

One of the fastest growing areas in the EA literature focuses on
the extension of the algorithms to evolutionary multiobjective op-
timization (Deb 2001; Coello Coello et al. 2007). Although it is
beyond the scope of this paper to give a detailed overview of the
advanced operators required by multiobjective EAs, the algo-
rithms use the same primary selection, mating, and mutation op-
erators as previously discussed. The goal of multiobjective
optimization is to approximate the Pareto-optimal trade-offs be-
tween an application’s conflicting objectives. These trade-offs are
composed of the set of solutions that are better than all other
solutions in at least one objective and are termed nondominated
or Pareto-optimal solutions (Pareto 1896). The Pareto-optimal
front is obtained by plotting these solutions according to their
objective values, yielding an M dimensional surface where M is
equal to the total number of objectives. Multiobjective EA’s
population-based search enables them to evolve entire trade-off
(or Pareto) surfaces within a single run for problems with huge
decision spaces. Recent studies have highlighted several very ef-
ficient and effective algorithms for water resources applications
(Bekele and Nicklow 2005; Farmani et al. 2005a; Kollat and Reed
2006, 2007b; Tang et al. 2006, 2007).

Water resources is, interestingly, one of the first application
domains (Cieniawski et al. 1995) to test multiobjective EAs in the
early 1990s and the algorithms have been used successfully in a
wide array of environmental applications (Ritzel et al. 1994,
Cieniawski et al. 1995; Halhal et al. 1997; Loughlin et al. 2000;
Reed et al. 2001; Erickson et al. 2002; Reed and Minsker 2004;
Farmani et al. 2005a). Recent multiobjective EA applications
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demonstrate that a growing body of researchers in both the water
resources and broader systems analysis communities are seeking
to use multiobjective EAs in “many-objective” applications where
three or more objectives are optimized simultaneously (Deb 2001;
Coello Coello et al. 2007; Farina and Amato 2002; Kumar and
Ranjithan 2002; Deb et al. 2003; Reed and Minsker 2004; Flem-
ing et al. 2005; Kollat and Reed 2007b). Moreover, many recent
multiobjective optimization applications within the water re-
sources literature are applying multiobjective EAs successfully to
highly dimensional continuous, integer, and binary decisions (La-
badie 2004; McPhee and Yeh 2004; Farmani et al. 2005b; Muleta
and Nicklow 2005; Ren and Minsker 2005; Dandy and Engel-
hardt 2006). For example, multiobjective EA applications in hy-
drologic model calibration (Vrugt et al. 2003a), nonpoint source
pollution management (Muleta and Nicklow 2005), groundwater
management (Ren and Minsker 2005), and distribution systems
(Farmani et al. 2005b) consider complex integer, continuous, or
mixed decisions.

A key strength of multiobjective EAs is their ability to rapidly
approximate the true Pareto surface even if it is not exactly quan-
tified, which can often be sufficient in the presence of computa-
tional constraints. It should be noted that elitism, population
sizing, and solution archiving are all critical issues for success-
fully applying multiobjective EAs (Bekele and Nicklow 2005;
Kollat and Reed 2006). In particular, Kollat and Reed (2007b)
have recently shown that these algorithms potentially have a qua-
dratic computational complexity when solving water resources
applications. A quadratic complexity implies that a twofold in-
crease in the number of decision variables will yield an eightfold
increase in the number of function evaluations required to solve
an application. Kollat and Reed (2007b) also demonstrated how
solution archiving can be used to reduce multiobjective EAs com-
putational complexities to be approximately linear. There is a
clear need and opportunity for water resources researchers to ad-
vance the field by developing computational strategies to enhance
the efficiency, effectiveness, and reliability of multiobjective EAs
(see di Pierro et al. 2007).

Optimization for Unmodeled Objectives

Water resources management and design problems often involve
political, societal, and other subjective goals that cannot be rep-
resented mathematically. By coupling a simulation model with an
EA-based optimization approach, a mathematically optimal solu-
tion may be identified, but this solution may be infeasible when
considering subjective preferences. Singh et al. (2008) recently
developed a methodology for model calibration with interactive
evolution to incorporate unmodeled objectives in the search pro-
cedure. Interactive evolution (Takagi 2001) is a fast-growing field
within EC that aims to utilize subjective responses from human
users to drive the evolutionary search. Since GAs are not depen-
dent on derivative information they are ideal for this approach.
Human responses are elicited as numerical ranks and these are
then used as fitness function for the GA. Singh et al. (2008)
extended the interactive paradigm to multiobjective optimization
by considering the human response as one of multiple criteria for
the fitness calculation. This is especially important for areas such
as parameter identification, where quantitative performance met-
rics are at least as important as the subjective preferences of the
modeler. Singh et al. (2008) used nondominated sorted genetic
algorithm (NSGA II) as the underlying multiobjective optimizer
but used a novel “image-based machine learning” approach to
reduce the number of solutions that need to be shown to the
expert (thus dealing with the problem of “user fatigue”).

A second approach to address unmodeled objectives in the
decision-making process is to generate alternative solutions that
perform similarly well for the modeled objectives. A set of alter-
native solutions should provide insight and options for the final
stages of decision making. Niching is an EA-based technique that
identifies solutions that are distributed throughout the decision
space, through operators that favor a diverse population. The
modeling to generate alternatives approach, as developed by Brill
(1979), is a systemic approach that has been used for identifying
maximally different solutions within some target performance for
the originally modeled objectives. In the context of this approach,
Harrell and Ranjithan (2003) applied a sequential GA (SGA)-
based model to identify a set of alternative watershed-scale de-
tention pond designs. Zechman and Ranjithan (2007b) later
developed a broader EA-based methodology for explicitly gener-
ating a set of alternative solutions. This new algorithm uses mul-
tiple populations to identify maximally different alternative
solutions.

Exploiting Parallel Computing

Since EA’s population-based search makes them amenable to
being implemented on distributed or shared memory parallel
computing architectures, parallelization is an important way of
enhancing search efficiency, effectiveness, and reliability. The
“ease-of-parallelization” for evolutionary optimization methods is
a widely quoted methodological benefit in the past literature
(Goldberg 1989; Cantu-Paz 2000). There are three primary ben-
efits to parallelizing of EAs: (1) reducing application run times;
(2) increasing the size and difficulty of water resources applica-
tions that can be solved; and (3) reducing random seed effects so
search results are attained with high reliability. Despite the fre-
quent characterization of EAs as being easily parallelized, there
have been a relatively limited number of water resources applica-
tions that have explored parallel implementations (Karpouzos et
al. 2001; Babbar and Minsker 2002; Cui and Kuczera 2003, 2005;
Reed and Yamaguchi 2004a; Mahinthakumar and Sayeed 2005;
Tang et al. 2007).

The most common parallelization approaches that have been
applied in the water resources literature are the master-slave and
multiple population schemes. The easiest of these approaches is
the master-slave implementation where a single master processor
controls the evolution operators and the slaves simply evaluate
population members. The search dynamics of the master-slave
scheme are the same as the base serial EA; the primary difference
is that more searches are available per unit of wall-clock time.
The prior master-slave implementations in the water literature
demonstrate that the ratio of design evaluation times and proces-
sor communication costs control the value of adding additional
processors. Mahinthakumar and Sayeed (2005) provided an ex-
cellent example of using large-scale computing architectures to
distribute global and local search in a hybrid search application.
Tang et al. (2007) demonstrated that “time continuation” (i.e.,
periodic injection of random solutions into the search population
to maintain diversity; see Goldberg 2002) can dramatically en-
hance the performance of master-slave search for problems that
can be solved with reasonable success using the serial version of
an algorithm.

In cases where problem difficulty and not search duration
causes an EA to fail in identifying optimal solutions, the master-
slave paradigm will not enhance the search (Tang et al. 2007). In
these instances, users can consider the value of using either the
multiple population or diffusion parallelization schemes. As noted
by Back et al. (2000), the multiple population (also termed the
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island model) scheme fundamentally changes EA search dynam-
ics relative to the serial versions of algorithms. Cantu-Paz (2000)
highlighted that it is much more challenging to design and assess
multiple population parallelization schemes. In the multiple popu-
lation model, each processor has a fully functional version of an
EA and users must decide on how to design interactions (e.g., see
Karpouzos et al. 2001; Tang et al. 2007). Tang et al. (2007) ex-
plicitly showed that the multiple population schemes when de-
signed well can be used to solve very difficult problems for which
the serial version of an EA performs poorly regardless of search
duration. The study also highlights that when judging the effec-
tiveness of parallelization schemes, users should consider both
solution quality and speedup jointly. Cantu-Paz (2000) provided a
more detailed treatment of the issues EA users should consider
when assessing parallel performance; he highlighted that monitor-
ing solution quality will ensure that prematurely converged results
with small clock times and poor solution quality do not bias
speedup assessments. Ideally, the goal of parallelization is to at-
tain “linear speedups” which means that when P processors are
used to solve an application, the parallel computing time will be
equal to 1/P of the serial computing time (i.e., speedup is equal P
or the number of processors used). There is a strong potential for
more research to characterize how different hardware architec-
tures and parallel EA configurations can be used to overcome
computational limits in water resources and environmental appli-
cations.

Optimization under Uncertainty and Fitness Approximation

Uncertainties in objective functions, constraints, and system pre-
dictions are very important in water resources planning and man-
agement when considering issues such as reliability, system
resiliency, or solution robustness to measurement errors. For a
groundwater remediation problem, Smalley et al. (2000) demon-
strated that the natural selection analogy and population dynamics
of EAs can be exploited to efficiently evolve solutions that per-
form well in the presence of uncertainty. This work applies the
recommendations of Miller and Goldberg (1996), which show
that very small Monte Carlo samples of uncertain problem param-
eters can be used to evolve such solutions. The basic premise is
that a modest number of Monte Carlo draws (~5-20) per popu-
lation member can be used to compute their average fitness. The
selection operator will increase the number of highly fit individu-
als and implicitly increase the number of Monte Carlo realizations
used in their evaluation (assuming new samples are taken at each
generation). Subsequent extensions of this work for single and
multiobjective applications have introduced age operators that
track the survival of fit members and minimize the number of
Monte Carlo draws used in their evaluation (Chan Hilton and
Culver 2005; Kapelan et al. 2005; Wu et al. 2006). Challenges
with respect to these efforts include the inability to exactly
specify the reliability or robustness level in the problem formula-
tion prior to running the EA and the increased computational
burden posed by added design evaluations.

In context of uncertainty and generally when using of EAs,
fitness evaluation using some form of statistical, conceptual or
physical simulation is the most computationally intensive and
limiting component of water resources applications. The compu-
tational limits posed by fitness evaluations have motivated the
development of approximation frameworks, whereby a computa-
tionally intensive model is replaced with an approximate model
such as a artificial neural network (ANN), kriging, or support
vector machine. There has been a significant number of applica-
tions across several water resources domains that show the poten-

tial benefits of fitness approximation (neural network methods—
Aly and Peralta 1999b; Muleta and Nicklow 2004; Broad et al.
2005; Yan and Minsker 2006; Behzadian et al. 2009; kriging
approaches—Bau and Mayer 2006; and radial basis function-
based schemes—Mugunthan and Shoemaker 2005. As high-
lighted by Jin et al. (2002), the key challenge in fitness
approximation is balancing the quality of the approximate model
relative to the true model such that evaluation errors do not nega-
tively impact EA search. Yan and Minsker (2006) presented a
promising approach that strongly couples evolution and the on-
line training of a neural network (i.e., during an optimization) to
adaptively classify the trustworthiness of the approximation
model and enhance its performance using the true model. Fitness
approximation has broad value for enhancing the complexity of
water resources applications that can be solved using EAs and
more generally as a means of enhancing global sensitivity or un-
certainty analysis for complex models (Mugunthan and Shoe-
maker 2005).

Application-Specific Research and Innovations

Over the last three decades, documented applications of EAs have
grown significantly. There is a strong bias in the literature toward
GAs, but a broader range of EAs are rapidly gaining popularity.
Applications can be categorically separated into several key
areas: water distribution systems design and operation, urban
drainage and sewer systems, water supply and wastewater treat-
ment applications, hydrologic and fluvial systems, and groundwa-
ter systems design. Note that methods used in model parameter
identification are discussed separately herein given that (1) the
topic is relevant in every water resources modeling area; (2) there
is an extremely rich body of EA literature focusing on this topic
alone; and (3) there is distinct applicability and commonality of
challenges across multiple subdisciplines.

Water Distribution Systems and Closely Related
Applications

Water distribution systems are comprised of interconnected
sources, pipes, and hydraulic control elements (e.g., pumps,
valves, regulators, and tanks). They are designed to deliver suffi-
cient quantity of water to consumers at required pressure, with
required quality (i.e., safe), and in a reliable (i.e., continuous),
cost-effective, and sustainable manner. Over the past two decades,
considerable investment has been made in developing and apply-
ing EAs to improve the design and performance of water distri-
bution systems. Interestingly, one of the first water engineering
applications of GAs was the optimization of pump schedules for a
serial liquid pipeline (Goldberg and Kuo 1987). Since then, there
has been increasing interest in the application of EAs to a wide
variety of water distribution system problems, ranging from cali-
bration of water distribution models, through optimal system de-
sign, to optimal operation.

Historically, although models for least-cost design of water
distribution systems have existed for nearly four decades (e.g.,
decomposition and nonlinear programming techniques), the capa-
bility to provide design solutions has improved dramatically
through use of EAs. Simpson et al. (1994) were the first to use
GAs for water distribution systems. They applied and compared a
GA solution to enumeration and to nonlinear optimization using
the network of Gessler (1985). Savic and Walters (1997) used
GAs to solve and compare results of the one-loading gravity sys-
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tems of the two loop network (Alperovits and Shamir 1977), the
Hanoi network (Fujiwara and Khang 1990), and the New York
Tunnels system (Schaake and Lai 1969). Vairavamoorthy and Ali
(2005) presented a GA framework for the least-cost pipe network
design problem that excludes regions of the search space where
impractical or infeasible solutions are likely to exist, and, thus,
improves search efficiency. Wu and Walski (2005) introduced a
self-adaptive penalty approach to handle the transformation from
a constrained into a nonconstrained framework for least-cost de-
sign and rehabilitation problems of a water distribution system, as
applied in a GA scheme. Keedwell and Khu (2005) developed a
hybrid methodology involving a cellular automata approach to
provide a good initial population for GA runs. They demonstrate
that the solutions found consistently outperform the nonhybrid-
ized GA on three different case studies.

Water distribution systems gradually deteriorate over time,
with internal corrosion and depositions causing loss of carrying
capacity in pipes and a consequent increase in pumping pressures
and energy costs, pressure fluctuations, inadequate pressure at
customers’ premises, and water quality problems. As the deterio-
ration of water distribution systems and the change in their struc-
tural, hydraulic, and water quality performance are a gradual and
continuous process, a rehabilitation strategy is unlikely to involve
a “one-off” capital expenditure on a system. Rehabilitation is,
therefore, more likely to involve a schedule of works phased over
a number of years. Halhal et al. (1999) developed a multiobjec-
tive optimization method to find the optimal planning of the re-
habilitation, upgrading and/or expansion of a water distribution
subject to limited funding. The method uses a structured messy
GA (Halhal et al. 1997) to define the different alternatives to be
undertaken in the network pipes, and their scheduling in the plan-
ning period, which yields the maximum benefit with respect to
invested money. The method takes into account the different time-
varying factors internal and external to the system under consid-
eration. Dandy and Engelhardt (2001) also demonstrated the use
of a GA to find a near-optimal schedule for the replacement of
pipes in order to minimize the present value of capital, repair, and
damage costs. The methodology was applied to a case study in
Adelaide, Australia. Both of these studies demonstrated the ef-
fects on the optimal solutions of varying parameters such as in-
terest and inflation rates. Engelhardt et al. (2003) introduced
whole-life cost principles to water distribution system manage-
ment. A whole-life cost approach aims to achieve the lowest net-
work provision and operating cost when all costs (direct and
indirect, private, and societal) are considered to achieve standards
enforced by regulation. The links established between the net-
work management activities and their costs then allowed a GA-
based search technique to be applied to identify the least
operating or maintenance regime for a given scenario.

In addition to design and construction costs, pumping and en-
ergy costs form an important part of the operational expenditure
of water distribution systems. As a result, pump scheduling has
been increasingly considered as a means of reducing energy costs
by taking advantage of off-peak electricity tariff periods and res-
ervoir storage available in a water distribution system. In line
with other optimization applications in the water engineering
area, the attempts to use classical techniques for pump scheduling
were later followed by application of EA approaches. Mackle et
al. (1995) were among the first to apply a binary GA to pump
scheduling problems, by minimizing energy costs, subject to res-
ervoir filling and emptying constraints. This was followed up by
Savic et al. (1997) who developed a multiobjective GA (MOGA)
approach capable of minimizing the energy cost while minimizing

the number of pump switches, used as a surrogate measure for the
maintenance cost due to wear-and-tear caused by frequent switch-
ing of pumps. The first industrial application of EAs to the pump
scheduling problem was reported by Atkinson et al. (2000) who
applied their GA to a water distribution system in the U.K. and
were able to reduce the annual operational cost by almost 20%
through better utilization of the off-peak electricity tariff periods
for pumping. To reduce the excessive run times required by the
GA of Atkinson et al. (2000) and van Zyl et al. (2004) developed
a hybrid optimization approach, by combining a steady-state GA
with the Hooke and Jeeves hill-climbing method. They found that
the hybrid method performed significantly better than the pure
GA, both in convergence speed and in the quality of the solutions
found. Further computational efficiency gains required for near-
real-time application of GAs to pump scheduling in water distri-
bution systems have been achieved by Rao and Salomons (2007).
They developed a process based on the combined use of an ANN
for predicting the consequences of different pump and valve con-
trol settings and a GA for selecting the best combination of those
settings. The methodology has successfully been demonstrated on
the distribution systems of Valencia (Spain) and Haifa (Israel).

Chlorine is commonly used in drinking water treatment as a
disinfectant to carry a residual into the distribution system. Com-
pared to conventional methods that apply disinfectant only at the
treatment plant or at the reservoir, booster disinfection can reduce
the total disinfection dose and still maintain the required level of
the residual in the system. Munavalli and Mohan-Kumar (2003)
presented a study on the use of a GA to estimate the optimal
disinfection dosage for multiple locations in three real systems.
Different chlorine dosage models were studied and the three prob-
lems varied in network complexity. Prasad et al. (2004) formu-
lated the booster facility location and injection scheduling
problem as a multiobjective problem and solved it using the
NSGA II approach. The objectives considered are the minimiza-
tion of the total disinfectant dose and maximization of the volume
of water supplied with residuals within specified limits Both stud-
ies found that EAs are well suited for optimal scheduling of mul-
tiple chlorine sources.

Over the past 5 years, a number of additional applications of
multiobjective EAs have appeared in the water distribution sys-
tems literature. Prasad and Park (2004) presented a MOGA ap-
proach to the optimal design of a water distribution network by
minimizing the network cost versus maximizing the network re-
silience, where the network resilience is defined as a reliability
surrogate measure taking into consideration excess pressure heads
at the network nodes and loops with practicable pipe diameters.
Farmani et al. (2005a) compared three evolutionary multiobjec-
tive optimization algorithms for water distribution system design
through visualizing the resulting nondominated fronts of each of
the methods and by using two performance indicators.
Vamvakeridou-Lyroudia et al. (2005) employed a MOGA to
evaluate trade-offs between the least cost and maximum benefits
of a water distribution system design problem, with the benefits
evaluated using fuzzy logic reasoning. Ostfeld and Salomons
(2006) introduced a multiobjective algorithm for water distribu-
tion systems security, trading off the detection likelihood with the
expected time of detection, the expected population affected prior
to detection, and the expected demand of contaminated water
prior to detection.

Urban Drainage and Sewer System Applications

In the face of increasing budget constraints and more stringent
environmental regulation, sewer management practitioners are
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confronted with a significant challenges, which in turn has en-
couraged the pursuit of cost-effective strategies for storm sewer
system management. However, the presence of combined sewers,
as opposed to separate sanitary and storm sewer systems (i.e.,
where household wastewater and storm-water runoff are not
transported through the same pipes), makes the problem even
more difficult. A large number of structural and nonstructural so-
lutions exist among methods for optimizing storm sewer manage-
ment practices. At the design stage, the problem is to seek optimal
scenarios for a system’s configuration. At the management stage,
the problem is to develop optimal alternatives for operation and
maintenance, such as real-time control and whole-life-cost man-
agement. Over the past 20 years, due to increased consideration
of water quality, sustainability, and integrated management, the
scope of sewer system design has been greatly expanded (Guo et
al. 2008) to involve a wider spectrum of environmental, ecologi-
cal, climate change, control, and maintenance challenges.

The optimal design of a sewer network aims to minimize con-
struction costs while ensuring adequate system performance
under specified design criteria. Since Cembrowicz and Krauter
(1987) made an attempt to use EAs for sewer optimization, EC
approaches, particularly GAs, have been the most popular and
successful optimization techniques for this task (Walters and Lo-
hbeck 1993; Cembrowicz 1994; Walters and Smith 1995; Parker
et al. 2000; Liang et al. 2004; Afshar et al. 2006; Barreto et al.
2006; Farmani et al. 2006). GAs, when coupled with appropriate
hydraulic simulation software, significantly reduce the need for
simplification of system representation and holistically considers
internetwork effects (e.g., surcharge and backwater). Hybrid
methods and multiobjective techniques are becoming attractive in
this field of study as well. Farmani et al. (2006) and Guo et al.
(2006) employed local search techniques to seed a MOGA
(NSGA 1I) in the design of sewer networks.

Water Supply and Wastewater Treatment Applications

EAs have been successfully applied in design and operation of
water and wastewater treatment plants and to other water quality
management problems. They have been applied to identify mem-
brane and operational characteristics for reverse osmosis systems
in desalination (water treatment) plants (Murthy and Vengal 2006;
Guria et al. 2005) and for designing industrial wastewater appli-
cations to identify wastewater treatment configurations within
production plants to incorporate water reuse, regeneration, and
treatment to minimize wastewater discharge (Tsai and Chang
2001; Li et al. 2003; Lavric et al. 2005). Additionally, a GA was
applied to identify process parameters to cost-effectively remove
organics from wastewater to meet pollutant removal standards
(Suggala and Bhattacharya 2003). For operation of a domestic
wastewater treatment plant, Chen et al. (2003) (see also Chang et
al. 2001) investigated the use of a GA to identify real-time control
strategies, such as pH and nutrient levels, electricity consumption,
and effluent flow rates, for meeting cost goals and effluent stan-
dards.

As operation of a treatment plant is driven by the conditions of
the influent into the plant from the sewer system, and the perfor-
mance of the treatment plant directly impacts the quality of the
receiving water body, wastewater treatment plants have been de-
signed more holistically through integrated modeling and optimi-
zation of the treatment plant as part of a larger system. Several
studies use GAs to design urban wastewater systems by simulta-
neously identifying both characteristics of the sewer system and
operational settings of the treatment plant to meet quality con-

straints in the receiving water body (Schutze et al. 1999; Rauch
and Harremoes 1999; Langeveld et al. 2002). Alternatively, a
wastewater treatment plant may be designed as part of a regional
wastewater treatment network. Management strategies for a re-
gional system have been investigated to set the treatment levels at
a set of facilities and the conveyance of wastewater between
plants to minimize the collective impact on the receiving water
quality (Cho et al. 2004; Wang and Jamieson 2002; Vasquez et al.
2000).

Chen and Chang (1998) introduced a GA to solve a nonlinear
fuzzy multiobjective programming model, but they only consid-
ered biochemical oxygen demand and dissolved oxygen (DO) as
water quality parameters, and the water quality calculation was
based on the Streeter-Phelps equation. Bobbin and Recknagel
(2001) established inducing explanatory rules for the prediction
of algal blooms by GA. Burn and Yulianti (2001) explored waste-
load allocation problems using GAs. Three optimization model
formulations were developed, each meant to be examples of the
types of waste-load allocation problems that can be addressed
using the techniques developed. The formulations of two of these
models address problems arising in the planning context, while
the third model addresses waste-load allocation decisions of use
when developing an operational strategy for a river basin. Yanda-
muri et al. (2006) similarly proposed optimal waste load alloca-
tion models for rivers. A multiobjective optimization framework
(NSGA 1II) was used, considering (1) the total treatment cost; (2)
the equity among the waste dischargers; and (3) a comprehensive
performance measure that reflects the DO violation characteris-
tics. Kerachian and Karamouz (2005) extended some of the clas-
sical waste load allocation models for river water quality
management for determining the monthly treatment or removal
fraction to evaporation ponds. The high dimensionality of the
problem (large number of decision variables) is handled using a
sequential dynamic GA.

Applications in Hydrologic and Fluvial Modeling

In surface-water hydrology, applications of EAs can be broadly
categorized as those that focus on watershed planning and man-
agement and those that center on instream management of flows.
Major complicating issues in both cases are the unique character-
istics of surface-water flow and its interaction with climate, to-
pography, and local soils.

The application of GAs for watershed planning was introduced
by Yeh and Labadie (1997), who presented a multiobjective
watershed-level planning of storm-water detention systems. A
MOGA was applied to generate nondominated solutions for sys-
tem cost and detention effect for a watershed-level detention sys-
tem. Harrell and Ranjithan (2003) applied a GA-based
methodology to identify detention pond designs and landuse allo-
cations within subbasins to manage water quality at a watershed
scale. Muleta and Nicklow (2005) linked a GA with USDA’s Soil
and Water Assessment Tool (SWAT) to identify land use patterns
to meet water quality and cost objectives. The strength Pareto EA
is integrated with SWAT for multiobjective optimization. To re-
duce the computational burden of SWAT, an ANN is trained to
mimic SWAT and ultimately replace it during the search process.
Perez-Pedini et al. (2005) developed a distributed hydrologic
model of an urban watershed in the northeast of the United States
and combined it with a GA to determine the optimal location of
infiltration-based best management practices (BMPs) for storm-
water management. The results indicate that the optimal location
and number of BMPs are complex functions of watershed net-
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work connectivity, flow travel time, land use, distance to channel,
and contributing area. A Pareto frontier describing the trade-off
between the project cost and extent of watershed flooding was
developed.

A closely related problem deals with reservoir system opera-
tion for water supply and/or other objectives, often a major con-
cern for municipalities and regional development activities.
Single reservoir operating policies are usually defined by rules
that specify either reservoir desired (target) storage volumes or
desired (target) releases based on the time of year and the existing
storage volume of the reservoir. Storage is typically computed via
the continuity equation, representing a straightforward balance of
reservoir inflow and outflows. Multiple-operating policies must
also take into account the existing total storage volume in all
reservoirs. Oliveira and Loucks (1997) were one of the first to use
a GA to derive these multireservoir operating policies. Real-
valued representation, elitism, arithmetic crossover, mutation, and
“en bloc” replacement were used in the algorithms to generate
successive sets of possible operating policies. Wardlaw and Sharif
(1999) investigated several alternative GA formulations for reser-
voir system optimization. They concluded that the most promis-
ing GA approach for a four-reservoir problem consists of real-
value coding, tournament selection, uniform crossover, and
modified uniform mutation. Nixon et al. (2001) used a GA-based
model to identify water allocation schedules for off-farm irriga-
tion systems. The aggregated objective function focused on maxi-
mizing the number of water orders that are delivered at a
particular time, limiting variations in supply channel flow rates,
and minimizing the exceedance of channel capacity. Merabtene et
al. (2002) assessed the susceptibility of water supply systems to
droughts and determined optimal supply strategies through link-
ing a real-time rainfall-runoff forecasting model, a water demand
forecast model, and a reservoir operation model with a GA. New
GA-based operators were introduced to minimize the risks of
drought damage and improve the convergence of the model to-
ward practical solutions. Dessalegne et al. (2004) integrated the
National Weather Service’s unsteady hydraulic simulation model,
FLDWAYV, with both binary and real-coded GA to develop opti-
mal operation of locks and dams in the Illinois river for ecosys-
tem and navigational requirements. Kerachian and Karamouz
(2006, 2007) combined a water quality simulation model and a
stochastic conflict resolution GA-based optimization technique
for determining optimal reservoir operation rules. This GA-based
stochastic optimization model accounted for inherent uncertainty
of reservoir inflows. Ganji et al. (2007) and Kerachian and Kar-
amouz (2006) developed a modified version of the simple GA,
called SGA, for application to a reservoir operation problem. The
SGA reduces the overall run time as compared to the simple GA
through dynamically updating the length of chromosomes. The
SGA model was applied to the Zayandeh-Rud river basin located
in the central part of Iran to derive operating rules for water
allocation. Karamouz et al. (2007) solved a similar problem using
a GA-K nearest neighborhood (GA-KNN)-based optimization
model. In this methodology, the lengths of chromosomes are in-
creased based on the results of a KNN forecasting model. Finally,
Kuo et al. (2006) used a hybrid neural GA for water quality man-
agement of the Feitsui Reservoir in Taiwan, and Kerachian et al.
(2006) developed a model that combined a numerical water qual-
ity simulation model and a GA for determining optimal reservoir
operating rules. Nagesh Kumar et al. (2006) similarly developed a
GA model for obtaining an optimal reservoir operating policy, but
focusing on optimal crop water allocations from an irrigation res-

ervoir in Karnataka state, India. The objective in that study was to
maximize relative yield from a specified cropping pattern.

Kerachian and Karamouz (2006, 2007) used an algorithm
combining a water quality simulation model and a stochastic con-
flict resolution GA-based optimization technique for determining
optimal reservoir operation rules. This GA-based stochastic opti-
mization model accounted for inherent uncertainty of reservoir
inflows in a general framework. To reduce the computational bur-
den of the GAs, the concept of SGA is used to develop a new
approach called varying chromosome length GA (VLGA). The
method was used to maximize utility functions of different water
users within the overall reservoir operation problem. Utility func-
tions related to allocated water demand, end-of-month storage,
and the concentration of a selected water quality variable within
allocated water. A traditional GA is first used to solve for near-
optimal operating policies for a small time horizon (e.g., 1 year).
The planning period and corresponding chromosome length is
then increased (e.g., 2 years) in subsequent evaluations, and the
initial value for each new gene is considered to be equal to the
optimal values obtained in the previous sequence. The process is
continued until the full time horizon is realized, thus allowing the
GA to efficiently solve the entire problem.

Zahraie et al. (2008) solved a similar problem using a GA-
KNN-based optimization model. The KNN method is a nonpara-
metric regression methodology that uses the similarity between
observations of predictors and K similar sets of historical obser-
vations to obtain the best estimate for a dependent variable. K
vectors of the past observations are obtained based on the mini-
mum Euclidean norm from the present condition among all can-
didates. For the application to reservoir operation, near-optimal
monthly water allocation is evaluated for a short period (e.g., 1
year). The second year is then forecasted by the KNN method and
added to the first year to create an enlarged chromosome length. It
is different from VLGA, primarily, in that with VLGA, mean
values are used for genes in sequential years.

Groundwater System Applications

A variety of EA approaches have been proposed and applied to
solve groundwater system problems. Researchers explored the
use of EAs in part because of the challenges faced by traditional
gradient-based methods: the complex and highly nonlinear nature
of groundwater problems, the discrete and/or discontinuous deci-
sion variables and cost functions included in many groundwater
optimization formulations, and the significant computational re-
quirements when numerical simulation models are used. Ground-
water optimization problems include remediation design,
monitoring network design, groundwater and coastal aquifer man-
agement, and parameter estimation and source identification. The
first published works that describe EAs developed and applied to
groundwater remediation and monitoring network design prob-
lems include Dougherty and Marryott (1991), which demon-
strated SA as a potential flexible approach; McKinney and Lin
(1994), which demonstrated the use of a simple GA to two fairly
simple groundwater supply hypothetical problems and a nonlinear
groundwater remediation hypothetical problem; and Ritzel et al.
(1994), which tested two MOGASs (vector-evaluated GA and a
Pareto GA) for solving a remediation optimization in which the
objectives were reliability and cost and compared the GAs to
mixed integer chance constrained programming. Mayer et al.
(2002) and Cunha (2002) presented reviews of design optimiza-
tion problems that apply traditional and heuristic solution ap-
proaches to solve groundwater flow and contaminant transport
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processes and remediation problems, while Qin et al. (2009) also
reviewed both groundwater simulation and optimization ap-
proaches.

Within groundwater applications of EAs, the level of complex-
ity and sophistication of the EA techniques developed has evolved
as the literature demonstrates that these techniques continue to be
promising and effective and in response to the nature of ground-
water problems developed. Earlier works focused on the applica-
bility of EAs on groundwater problems and the solution quality
and computation requirements of the EA approaches. More recent
works have proposed methods that address issues such as multi-
objective optimization, reducing computational time associated
with field-scale problems and parameter uncertainty.

Groundwater Remediation

Groundwater remediation design optimization has been the focus
of the majority of the literature in which EAs have been applied
to groundwater problems. Many works have explored the appli-
cation of GAs for pump-and-treat, in situ remediation, or soil
vapor extraction design optimization (e.g., Huang and Mayer
1997; Wang and Zheng 1997; Aly and Peralta 1999a,b; Guan and
Aral 1999; Katsifarakis et al. 1999; Sun and Zheng 1999; Aksoy
and Culver 2000, 2004; Chan Hilton and Culver 2000, 2001,
2005; Gumrah et al. 2000a,b; Liu et al. 2000; Yoon and Shoe-
maker 2001; Hsiao and Chang 2005; Ko et al. 2005; Kalwij and
Peralta 2006; Chang et al. 2007; Park et al. 2007; Sidiropoulos
and Tolikas 2008). SA or GA-SA hybrid approaches have also
been applied to similar groundwater remediation problems (e.g.,
Rizzo and Dougherty 1996; Wu et al. 1999; Skaggs et al. 2001;
Shieh and Peralta 2005).

GAs and other EAs have been evaluated and compared to
other gradient and heuristic optimization methods for solving
groundwater remediation optimization problems. Maskey et al.
(2002) compared four global optimization techniques [GA, mul-
tistart and clustering, adaptive cluster covering, and controlled
random search (CRS4)] for remediation design of hypothetical
and real systems and concluded that there was not one consis-
tently better approach for their examples. Matott et al. (2006)
tested five optimization algorithms [SA, particle swarm optimiza-
tion (PSO), real-coded GA, Fletcher-Reeves conjugate gradient,
and a random search algorithm] to solve a pump-and-treat opti-
mization problem in which the hydraulic control was simulated
using an analytical element method. They found that PSO had the
best performance in terms of solution quality and parallelization.
Yoon and Shoemaker (1999) compared three optimization ap-
proaches [binary-coded GA, derandomized evolution strategy
(DES), and direct search methods] for bioremediation optimiza-
tion. Their results did not identify one superior method, although
DES was efficient and accurate for the three problems solved.
Bayer and Finkel (2004) evaluated simple GAs and DESs for
optimizing pump-and-treat designs and found that DES in general
resulted in better performance. Other works have also demon-
strated the use of ES for remediation optimization. Biirger et al.
(2007) developed a DES with covariance matrix adaptation
(CMA-ES) for funnel-and-gate remediation design optimization.
Bayer and Finkel (2007) proposed ES with CMA-ES and rank p
update to solve pump-and-treat design problems.

Over the years, researchers have demonstrated the potential for
EAs to be used to address field-scale remediation optimization
problems. Even as computational power and the costs of compu-
tation have decreased, reducing computational costs for field-
scale problems continues to be an important issue. Rogers et al.
(1995) was the first to apply a GA to a field-scale remediation

problem by using an ANN in place of numerical groundwater
flow and contaminant transport simulation model. Yan and Min-
sker (2006) proposed an adaptive neural network GA that incor-
porates an ANN as an approximation model that is adaptively and
automatically trained within a GA, providing significant reduction
in computational cost with no loss in accuracy of the optimal
solutions for the hypothetical remediation test case analyzed. An-
other approach for reducing computational costs is to replace the
numerical groundwater simulation model with approximation
functions. Rizzo and Dougherty (1996) developed an SA with
importance functions and applied it to a time-varying field-scale
problem at Lawrence Livermore National Laboratory. Zheng and
Wang (2002) applied a GA with response functions to solve a
field-scale remediation problem at the Massachusetts Military
Reservation that included 500,000 nodes in the simulation model
and a 30-year planning horizon. Regis and Shoemaker (2004)
evaluated cost function approximation techniques to reduce com-
putational costs within an ES optimization approach. Other re-
searchers proposed extended GAs to speed up the search process
and reduce computational costs. Espinoza et al. (2005) proposed
the self-adaptive hybrid GA and demonstrated its ability to reduce
computation cost for groundwater remediation problems. Es-
pinoza and Minsker (2006a,b) developed two hybrid GAs that
include local search to speed up and improve the robustness of the
search process; they evaluated the hybrid GAs to eight remedia-
tion optimization test cases. Babbar and Minsker (2006) proposed
multiscale GAs to overcome solution reliability and computa-
tional cost issues when GAs are applied to field-scale problems.
Sinha and Minsker (2007) proposed multiscale island injection
GAs, which includes multiple population functions at different
spatial scales, to reduce the computational time to solve a field-
scale pump-and-treat remediation optimization problem. Others
have focused on parallelization strategies for reducing computa-
tional costs of groundwater optimization problems (He et al.
2007; Tang et al. 2007; Kobayashi et al. 2008).

An inherent attribute of groundwater problems is parameter
uncertainty. Ignoring this uncertainty can significantly impact op-
timal designs and design performance in many cases. In most
problems, the uncertainty is the parameter values that describe
groundwater flow and contaminant transport processes, either due
to limited data and/or heterogeneities in the groundwater systems.
A number of works have proposed EA-based approaches to incor-
porate parameter uncertainty in solving groundwater remediation
optimization problems (Aly and Peralta 1999b; Smalley et al.
2000; Guan and Aral 2004, 2005; Chan Hilton and Culver 2005;
Amaziane et al. 2005; Kalwij and Peralta 2006; Wu et al. 2006;
He et al. 2008; Bayer et al. 2008). Smalley et al. (2000) applied a
noisy GA to bioremediation design with health risk included in
the formulation. The noisy GA calculates the cost function-based
evaluations for multiple realizations of the uncertainty parameter.
Guan and Aral (2004, 2005) incorporated fuzzy sets into a GA to
account for uncertainty in hydraulic conductivity and dispersion
coefficients. Chan Hilton and Culver (2005) proposed the robust
GA that introduced the concept of string age and a form of real-
ization sampling into the GA to account for parameter uncer-
tainty. Wu et al. (2006) compared a Monte Carlo simple GA
(MCSGA) with a noisy GA to solve a sampling network problem
with uncertainty in the hydraulic conductivity. Their results indi-
cate that the more computationally efficient noisy GA produces
similar results to the MCSGA. Bayer et al. (2008) proposed a
computationally efficient and promising algorithm and introduced
the concept of “stack ordering” based on ranking of multiple re-
alizations of uncertain parameters.
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Other researchers extended the application of EAs to ground-
water remediation problems by exploring MOGAs with or with-
out parameter uncertainty. Erickson et al. (2001, 2002) proposed
niched Pareto GAs that used Pareto dominance ranking to solve a
multiobjective remediation problem. Hu et al. (2007) presented an
application of two-objective optimization (cost and efficiency) of
an in situ bioremediation system for a hypothetical site under
uncertainty. Mantoglou and Kourakos (2007) proposed a MOGA
for remediation optimization under hydraulic conductivity uncer-
tainty in which they developed a simple ranking method to iden-
tify critical realizations that affect the optimal solution. Singh and
Minsker (2008) developed a probabilistic MOGA (PMOGA),
which combines a method similar to the noisy GA with an addi-
tional archiving step with the NSGA II, and applied it to two
pump-and-treat problems—a hypothetical case study and a field-
scale case study at the Umatilla Chemical Depot in Oregon. They
compared the solutions identified by the PMOGA to those from
an averaging-based multiobjective approach, a stochastic single-
objective approach, and a deterministic multiobjective approach
and found that the PMOGA found solutions that, by simulta-
neously considering conductivity uncertainty and multiple reme-
diation objectives, had better objective functions.

Groundwater Monitoring

A number of works have proposed EA approaches to groundwater
monitoring network design (Chadalavada and Datta 2008), mul-
tiobjective EAs (Cieniawski et al. 1995; Reed et al. 2000b, 2003,
2007; Reed and Minsker 2004; Wu et al. 2005, 2006; Kollat and
Reed 2006, 2007a,b; Zhang et al. 2005; Dhar and Datta 2007;
Tang et al. 2007; Kollat et al. 2008; Lee and Ellis 1996). In these
groundwater monitoring optimization problems, the focus has
been on reducing redundant monitoring wells while capturing in-
formation about the contaminant plume. Cieniawski et al. (1995)
proposed two MOGAs to solve a monitoring network optimiza-
tion problem under uncertainty and generate trade-off curves for
the cost and reliability of the monitoring network. They compared
a vector-evaluated GA in which a fraction of the surviving popu-
lation is selected for each objective and a Pareto GA in which the
strings’ fitness values are based on the Pareto-optimality ranking.
These proposed MOGAs were not able to generate the entire
trade-off curve in a single iteration.

Later works demonstrated and developed alternative multiob-
jective EAs that are more effective in developing a wide range of
solutions on the Pareto curve. Reed and Minsker (2004) applied
NSGA II (Deb et al. 2002) to a multiobjective long-term moni-
toring (LTM) network design optimization problem. This was
later expanded upon by Kollat and Reed (2006), in which they
compared four EC approaches for multiobjective optimization of
LTM design: NSGA 1I, epsilon-dominance NSGA II (e-NSGA
II), epsilon-dominance multiobjective evolutionary algorithm
(e-MOEA), and the strength Pareto evolutionary algorithm 2
(SPEA2). They found that the e-NSGA II had superior perfor-
mance compared to the other algorithms when tested on a four-
objective formulation problem. Later, Reed et al. (2007) showed
that e-dominance archiving and automatic parameterization tech-
niques can improve the efficiency and ease-of-use of an e-NSGA
II by applying this approach to four-objective LTM problems.

Evolutionary Computation in Hydrologic Parameter
Identification

Parameter identification is a critical component of water resources
modeling given that all water resources applications, whether sur-

face water, groundwater, water supply or others, depend on well-
calibrated models that can be used to make meaningful
predictions for decision makers and modelers. It is also important
to recognize that there exist subtle distinct differences between
the terms parameter identification, calibration, and inverse mod-
eling. Parameter identification is a generalized term that denotes
any exercise, including field or experimental work, to identify
parameters for a model; calibration is the exercise of reducing the
error between a known model and measurements, typically by
adjusting the parameters of the model; and inverse modeling re-
fers to the establishment of an explicit model that maps the (re-
verse) relationship between the data and the model inputs (as
opposed to the model, which maps the “forward” relationship
between model inputs and data). In cases where inverse modeling
is a nonlinear process, nonlinear solvers, including EAs, need to
be used to find the optimal inverse relationship. In most cases,
this is the same process as finding optimal model parameters or
solving the calibration problem. For the sake of simplicity, these
terms are treated equivalently in this study and will generally be
used interchangeably.

Studies such as Duan et al. (1992), Beven and Binley (1992),
Yeh (1986), and McLaughlin and Townley (1996) have shown
that the parameter identification problem for most hydrologic ap-
plications is ill posed, multimodal, nonlinear, and nonconvex.
Furthermore, Duan et al. (1992) performed a comprehensive
analysis of the search space for different types of calibration prob-
lems and reported the following challenges with the search space:
* Presence of many regions of attraction in the objective surface;
e Presence of multiple local optima within each region of attrac-

tion;
¢ Discontinuities, nonconvexity, and lack of smoothness in ob-

jective space;
¢ High dimensionality of search space; and
e Varying degrees of sensitivity and a large amount of nonlinear
interactions between parameter values.
Because of these challenges, EAs have emerged as the method of
choice in automated hydrologic model identification.

Single-Objective Parameter Identification

Early efforts in automated parameter identification concentrated
on the single-objective domain, relying upon minimizing aggre-
gate calibration error (such as the root-mean square error or the
sum of squared residuals) between model predictions and mea-
surements as the primary objective. Most approaches fall under
two broad categories of optimization algorithms: SCE [sometimes
referred to as SCE-University of Arizona (SCE-UA)] and GAs.
Of these, GAs have been used more in the groundwater commu-
nity while SCE-UA has been the more popular approach for
surface-water models.

In the realm of watershed flow and water quality modeling,
Wang (1991) was among the first to apply the “simple” GA to the
calibration problem. In addition to using the GA for the global
search, Wang (1991) also investigated local search techniques
(based on simplex) to “fine tune” the final set of model param-
eters, though with only modest success. Subsequently, many other
studies have applied GAs and their variants to watershed calibra-
tion. These include Babovic et al. (1994), Franchini and Galeati
(1997), Solomatine (1998), and Zou and Lung (2004) among oth-
ers. Of these, Zou and Lung (2004), proposed a robust approach
to calibrating water quality models for problems with sparse field
data. The approach, called “alternating fitness GA” (AFGA)
adopted GAs to inversely solve the governing equations, with an
“alternating” fitness method to maintain solution diversity and
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reduce premature convergence. The AFGA gradually changed (al-
ternated) the fitness function by varying the weights for different
data points used to compute the weighted sum of square residual
objective function). The variation could either be temporal (i.e.,
subsequent generations of the GA would be evolved under chang-
ing fitness functions) or spatial (i.e., different members of the
same population would be stochastically evaluated using different
variations of the fitness function). Zechman and Ranjithan
(2007a) developed a methodology to address the difficulties asso-
ciated with model parameterization by combining calibration for
identification of numeric parameter values with a symbolic search
for an error term that would correct structural errors in the model.
This methodology was implemented by integrating GA and ge-
netic programming searches.

A number of studies, including Solomatine (1998), Franchini
et al. (1998), and Duan et al. (2003), have reported problems with
slow and unstable convergence with GAs. Consequently, many
researches have “hybrid” approaches that use a GA to search for
“globally” promising solutions and local search algorithms to ex-
pedite convergence to local basins of attractions; examples in-
clude coupling GAs with sequential quadratic programming in the
case of Franchini (1996) and GAs with local hill climbing for
Ndiritu and Daniell (1999).

Among the earlier applications for GAs for groundwater cali-
bration can be found in Zheng (1997), who developed a modular
GA-based simulation-optimization environment (called the
modGA) that could be applied to different groundwater optimiza-
tion problems. A version of the modGA, called modGA_P (the P
standing for parameter estimation), was developed specifically for
groundwater model calibration. Other subsequent applications of
the simple GA to groundwater calibration include Wang and
Zheng (1998) and Solomatine et al. (1999). However, the high
dimensionality of the search space for groundwater model identi-
fication has limited the number of EC applications.

As with parameter identification in watershed modeling, hy-
brid approaches have also been proposed for the groundwater
field. Such hybrid approaches have been used by Tsai et al. (2003)
and Mahinthakumar and Sayeed (2005). Tsai et al. (2003), in
particular, proposed a hierarchical “global-local” optimization ap-
proach to solve what they called the “generalized inverse prob-
lem” of not only finding the right values of parameters but also
the correct structure for the parameter field. They used the GA to
find the approximately optimal “structures” (in their example,
zones of hydraulic conductivity) of the parameter field, the local
search to fine tune the configurations of these zones, and finally a
gradient-based search mechanism [the Broyden-Fletcher-
Goldfarb-Shanno algorithm] to find the parameter values for the
optimal zones. Mahinthakumar and Sayeed (2005) proposed a
similar approach, whereby the GA was used to quickly find prom-
ising alternative solutions that were then used as starting points
for local (both gradient and nongradient based) optimization ap-
proaches. Another interesting variant has been proposed by Ines
and Droogers (2002), who used a “microGA” to solve the ground-
water calibration problem. A microGA [Krishnakumar 1989;
D.L. Carroll, GA Fortran Driver Version 1.7, 1998
(www.cuaerospace.com/carroll/ga.html)] is a GA with a small
population size (typically only 5-10) that is repeatedly run for
short durations and then restarted (while keeping a few optimal
solutions from the previous runs) until convergence is achieved.
MicroGAs exploit the random injection of new solutions to main-
tain search for as long as necessary or feasible (time continuation
termed by Goldberg 2002). MicroGAs have been reported to be
computationally efficient and robust relative to standard GAs.

The SCE-UA was first introduced by Duan et al. (1992) and
has subsequently emerged as arguably the most popular approach
for parameter identification in watershed modeling. The motiva-
tion for the development of this global optimization algorithm
was the work done by Duan et al. (1992) that showed that the
problem was an inherent multimodal problem with multiple local
optima that could “trap” most gradient-based solvers and may
lead to local convergence of even global optimization algorithms,
such as simple GAs. SCE-UA was developed as a robust alterna-
tive for solving such multimodal problems. In their original work,
Duan et al. (1992) acknowledged three optimization approaches
as the motivation for SCE-UA-simplex (Nelder and Mead 1965),
controlled random search (Price 1983), and evolutionary optimi-
zation (Holland 1975). The main idea behind SCE-UA is to par-
tition the search population into several communities or
“complexes.” Each complex represents different subspace of the
global fitness landscape and is evolved independently for a few
generations.

Cooper et al. (1997) who compared the performance of SCE,
GA, and SA for conceptual rainfall-runoff model calibration re-
ported that the SCE method “was the most robust and accurate
results, followed by the GA method, and then SA.” They also
reported that the GA had problems converging to the exact opti-
mal solution, although it did find solutions in the neighborhood of
the global optimum. Following the work by Duan et al. (1992)
many studies have used and enhanced the SCE-UA algorithm.
These include Sorooshian et al. (1993), Kuczera (1997), Madsen
(2000), Wang et al. (2001), and Eckhardt et al. (2005) among
others. The most recent development in this regard is the shuffled
complex evolution metropolis (SCEM) algorithm proposed by
Vrugt et al. (2003a). The SCEM combines the global optimization
capabilities of SCE-UA with a Markov chain Monte Carlo
(Gamerman 1997) sampler to generate the posterior distributions
of uncertain parameters. The distinguishing feature in the SCEM
algorithm is the evolution of individual complexes using a sto-
chastic approach called “sequence evolution metropolis” (SEM)
(instead of the deterministic approach used in SCE-UA).

SCE-UA (and related algorithms) is most popular within the
watershed modeling community. Based on the most current litera-
ture review, the aforementioned techniques have rarely been ap-
plied to subsurface models. While the reasons for this are open to
discussion, the high dimensionality of most groundwater models,
which typically have spatially continuous and highly heteroge-
neous parameters (such as hydraulic conductivities) compared to
the lumped-parameter approach that is more popular for surface-
water models, may be a possible deterrent to the use of such
approaches. The simplex search strategy (used in SCE-UA) is
known to suffer from slow convergence in high-dimensional
space, while the metropolis sampling technique (used in SCEM)
requires the calculation of the covariance of the n dimensional
parameter space, an operation that becomes computationally in-
tractable with higher dimensions. However, this trend has been
recently reversed by the work of Vrugt et al. (2004), who reported
some success applying the SCEM algorithm on a distributed,
large-scale, subsurface (vadose zone) model.

Bates (1994), Sumner et al. (1997), and Thyer et al. (1999)
were among the first to use SA for watershed model calibration
while Zheng and Wang (1996) were among the first to utilize this
technique for groundwater system. A number of studies proposed
a hybrid version of the SA algorithm, which combined SA with
the simplex method (Nelder and Mead 1965). This algorithm
(called SA-SX) starts out with pure SA, in turn perturbing (heat-
ing) and converging (cooling) the solution set until a prespecified
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minimum temperature is reached. At this point the simplex
method is used to quickly converge to the nearest local optima.
The motivation behind this approach is that the initial SA steps
would effectively search the parameter space and identify a re-
gion around the global optimum. The simplex method then con-
verges to this optimum, thus, significantly reducing the number of
iterations required by the typical SA for convergence. While
SA-SX linked SA with simplex in a two-step sequential manner,
the hybrid SA proposed by Efstratiadis and Koutsoyiannis (2002)
combined these two search methodologies within every iteration
of the optimization process.

Numerous optimization procedures for identifying parameters
for water distribution hydraulic models have been developed
since the 1970s (Savic et al. 2009). However, it was not until the
mid-1990s that the applications of EAs to this type of problem
first appeared (Savic and Walters 1995b; Walters et al. 1998; Lin-
gireddy and Ormsbee 1998, 1999). These first studies used a bi-
nary GA to optimize a normalized least-square type objective
function subject to implicit (hydraulic) and explicit (bound) sys-
tem constraints. Savic and Walters (1995b) and Walters et al.
(1998) focused on multiple steady-state (i.e., snapshot) models for
unknown pipe friction factors (roughness) by minimizing the
weighted sum of squared errors of pressure at nodes and flow in
pipes. Variables other than pipe roughness could, in principle, be
used as, for instance, demands may not be known precisely. Lin-
gireddy and Ormsbee (1998, 1999) calibrated an extended period
simulation (EPS) model for pipe friction factors and nodal de-
mands using a binary GA. The turn of the century also saw the
appearance of first commercial GA-based software for parameter
identification in water distribution hydraulic models, which is
now normally provided by all major water distribution software
vendors. However, these commercial tools have not embraced all
the latest developments provided by the research community,
which could be one of the contributing factors as to why they are
not being significantly used in practice (Savic et al. 2009).

The focus on the computational efficiency and effectiveness in
obtaining optimal parameter values means that little effort has
been applied to determine the uncertainties (i.e., errors) associated
with these values and related water distribution model predictions
during the EA parameter identification process. To remedy this,
Kapelan et al. (2007) used the SCEM-UA optimization method-
ology (Vrugt et al. 2003b) to apply the Bayesian recursive ap-
proach to water distribution model calibration. Kapelan et al.
(2007) reported that the main advantages of the Bayesian calibra-
tion methodology over other approaches are that both parameter
values and associated uncertainties are determined in a single
optimization run and that the approach enables the specification
of prior information on parameters in a flexible probabilistic
framework. Jonkergouw et al. (2008) combined calibration for
unknown or uncertain demands with water quality model calibra-
tion. They used a modified SCE algorithm (Duan et al. 1992) and
the derivative-based Levenberg-Marquart algorithm in sequence
to determine the demand multipliers and water quality model pa-
rameters. The results presented by Jonkergouw et al. (2008) dem-
onstrate that water quality and hydraulic data can be used for
hydraulic and water quality models simultaneously.

Leak detection by inverse analysis of a water distribution
model has long been considered unlikely to bring satisfactory
results due to very limited observation information. Consequently,
a number of researchers investigated the use of transient mea-
sured data to provide enough information for a GA-based analysis
(Vitkovsky and Simpson 1997; Tang et al. (1999); Vitkovsky et
al. 2000, 2003). More recently, Wu and Sage (2006) reported on a

leakage detection model that uses an EPS model and flow emit-
ters to emulate leakage at a node and applied a fast messy GA
(Goldberg et al. 1993) to simultaneously optimize the emitter lo-
cations and the corresponding emitter coefficients. The approach
has been successfully applied to identify the leakage hotspots in a
real district metering area in the United Kingdom.

Multiobjective Parameter Identification

Single-objective approaches attempt to approximate the “global”
optimum for a single aggregated objective. More often than not,
there are multiple sources of information (for example, hydro-
graphs at different locations within the watershed) that can be
used to assess different aspects of model performance. Moreover,
even with a single source (and type) of data, the information can
be multidimensional (for example, in most cases the hydrologic
measurements exhibit spatiotemporal variability). Since different
sources of information and dimensions of the data are sensitive to
different aspects of the model, no one single objective can be used
to assess the performance of such a model. For watershed mod-
eling, different objectives can be used to assess different aspects
of the hydrographs that need to be matched by the model predic-
tion. Some typical objectives include peak/low flow error (differ-
ence between the peak/low flows of the predicted and measured
hydrograph), average error (an overall error), overall runoff vol-
ume error, Nash-Sutcliffe measure, etc. (see Gupta et al. 1999 and
Madsen 2000 for a discussion of different objectives and their
roles). For groundwater parameter identification, often the mul-
tiple objectives represent different sources of information (such as
water levels, direct geological measurement, or contaminant
tracer tests). Aggregating such multidimensional criteria into one
objective can lead to loss of information (Wagener and Gupta
2005). It has been persuasively argued that this loss of informa-
tion exacerbates the problem of nonuniqueness and multimodal-
ity, by making it difficult to discriminate between different
parameters (Yapo et al. 1998; Gupta et al. 1999). Over the last
few years, there has been a growing awareness that instead of
optimizing a single aggregated objective it is often worthwhile to
pose the problem in a multiobjective context, using the multiple
sources of information and dimensions of data to formulate dif-
ferent objective measures. Such a multiobjective approach does
not suffer from the loss of information inherent in the single-
objective approach and provides valuable insights into informa-
tion content of different data sources and the limitations and
uncertainties in the model.

One of the simplest (though not necessarily the most efficient)
approaches to solving for multiple objectives is to weigh and
aggregate them in a single objective and optimize for this aggre-
gated objective function. By changing the weights used in the
aggregation, different parts of the Pareto-optimal surface can be
generated, assuming the objectives are conflicting. This approach
has been applied in watershed modeling by Madsen (2003) who
used the SCE-UA to solve these multiple single-objective formu-
lations with different weightings. While such an approach seems
feasible for computationally tractable problems, rerunning a
population-based optimization approach (such as SCE-UA) mul-
tiple times can impose a formidable burden for most large-scale
watershed problems. Another drawback to this methodology is
that it has been shown (Das and Dennis 1997) that weighting is
only effective in finding Pareto-optimal solutions along the con-
vex portion of the Pareto front, thus, solutions along nonconvex
portions of the front could not be found by this method. An alter-
native (and more efficient) approach to multiobjective optimiza-
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tion is to simultaneously generate multiple solutions each
representing a different trade-off level between the objectives.

The goal of Pareto optimization algorithms, then, is to opti-
mize the watershed parameters to find a set of “nondominated”
(or Pareto optimal) parameter values (instead of one unique glo-
bal optimum) that represent the optimal trade-off between all the
objectives. Similar to the work on single-objective optimization,
the two dominant categories of approaches for multiobjective op-
timization are GAs and SCE-UA. Liong et al. (2001) were among
the first to use a Pareto optimization approach for watershed ap-
plications. Liong et al. (2001) also proposed other techniques that
made their accelerated convergence GA (ACGA) more efficient
and computationally tractable. First, instead of initializing the GA
population randomly, they used an experimental design scheme
called “fractional factorial design and central composite design”
(FFD-CCD) to initialize the GA population. FFD-CCD is based
on a polynomial approximation for the system response with re-
spect to the parameters (to be calibrated). FFD-CCD ensures that
data from the upper and lower bounds for each parameter as well
as values that lead to good coverage over the approximated poly-
nomial surface are included in the initial GA population. The
other significant contribution by Liong et al. (2001) was to use the
ACGA to identify only a relatively few solutions along the Pareto
surface (by using a small population size). The rest of the Pareto
surface was “filled in” by an ANN that was trained on the solu-
tions found by the ACGA.

While Liong et al. (2001) based their GA on the Fonseca and
Fleming (1993) ranking scheme, most other MOGAs used for
watershed calibration have used the Goldberg (1989) Pareto rank-
ing scheme discussed earlier. NSGA II (Deb et al. 2000) and its
variants use this ranking scheme and have, in particular, been
widely used for multiobjective parameter identification in water-
shed modeling. Two salient studies using this approach are Khu
and Madsen (2005) and Tang et al. (2006). In addition to using
NSGA II, Khu and Madsen (2005) introduced a useful postpro-
cessing step called “preference ordering scheme” (POS). As pre-
viously discussed, multiobjective optimization can lead to a
potentially large set of solutions (the number of Pareto-optimal
solutions is known to explode with each additional orthogonal
objective), comprising the final converged Pareto front. POS is an
approach that can be used to “filter” through all these solutions
and identify a subset of high performance solutions, which can
then be further analyzed by the decision maker. Khu and Madsen
(2005) showed that for a four-objective problem, such an ap-
proach can filter a Pareto set with almost 400 solutions to a set of
just 10 highly efficient solutions. These gains can grow incremen-
tally as the number of objectives increases for more complex
large-scale applications.

While Khu and Madsen (2005) focused on improving the
postoptimization analysis for multiobjective optimization, Tang et
al. (2006) explored approaches to make multiobjective optimiza-
tion (specifically the NSGA 1I algorithm) more user friendly and
scalable to different kinds of problems. The salient enhancements
proposed by Tang et al. (2006) in their algorithm (e-NSGA II)
were g-dominance archiving (Laumanns et al. 2002; Deb et al.
2003), adaptive population sizing, and self-termination scheme to
reduce the need for parameter specification by the user (Reed et
al. 2003). e-dominance archiving requires the specification of a
front-coverage precision threshold (g) for each objective. Small
values of ¢ lead to dense Pareto fronts, while large values of &
lead to sparser (but well distributed) Pareto fronts (more ame-
nable for problems with multiple objectives and large computa-

tional expenses, requiring small population sizes). Thus
e-dominance archiving optimally distributes the given population
across the converged Pareto front.

In addition to testing the e-NSGA II on a watershed calibration
problem, Tang et al. (2006) also compared its performance with
two other state-of-the-art multiobjective algorithms—the SPEA2
(Zitzler and Thiele 1999; Zitzler et al. 2002) and the multiobjec-
tive SCEM algorithm (MOSCEM-UA) (Vrugt et al. 2003a,b).
Similar to e-NSGA II, SPEA2 aims to optimally allocate solu-
tions across the Pareto front. Comparing these three approaches,
Tang et al. (2006) found that both SPEA2 and e-NSGA II per-
formed competitively for problems with a large number of deci-
sion variables (high-dimensional search space). In general,
SPEA?2 had superior coverage across Pareto fronts but its perfor-
mance depended on the appropriate specification of population
size. e-NSGA 1I, on the other hand, was advantageous due to its
efficient adaptive population-sizing and parameter-setting ap-
proach but had worse coverage compared to SPEA2. The perfor-
mance of MOSCEM-UA was least competitive for high-
dimensional problems but improved significantly as the problem
size is reduced (indicating that MOSCEM-UA might be better
suited for applications with fewer parameters).

A topic closely related to parameter identification is sampling
design in water distribution system modeling. The aim of the
sampling procedure is to determine optimal sensor locations in
the network. Many of the optimization formulations of the sam-
pling design problem were based on the work by Bush and Uber
(1998), who proposed sampling design models based on the
analysis of the water distribution system sensitivity (Jacobian)
matrix, but have not used optimization themselves. Kapelan et al.
(2003b) were the first to use a multiobjective EA to solve a sam-
pling design problem by considering simultaneously the sampling
design cost and model accuracy. Results from case studies indi-
cate that the optimal set of locations for a number of monitoring
points is not always a superset of the optimal set for a smaller
number of monitoring points, as is often assumed, and that greedy
procedures would not always result in the optimal design.

Summary and Conclusions

The growing body of work in the development and application of
EAs to environmental and water resources problems over the past
20 years has shown that these tools can be flexible and powerful
when used appropriately. However, several challenges and oppor-
tunities for further research remain. There is a growing recogni-
tion in water resources management that our methodologies must
themselves evolve to address “change” from local to global scale
human impacts and climate variability (Milly et al. 2008; Voros-
marty et al. 2000). These issues call for advances in our ability to
forecast highly uncertain nonstationary futures and expose the
importance of coupling engineering design and water cycle sci-
ence (National Research Council 2004). Emerging research is
showing that the historical disciplinary boundaries in water re-
sources need to be reconsidered and that our future management
frameworks will likely have to address strong nonlinearities, sys-
tem couplings, and a broader range of uncertainties.

These issues pose significant challenges and motivate the need
for EC applications to advance adaptive decision making under
uncertainty. As a field, it will be important to clarify across our
domains of focus (surface water, groundwater, water supply, etc.)
what general problem properties are posing computational barri-
ers for large-scale integrated water resources management frame-
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works. It will be important for future EC-based frameworks to
bridge process science and operational engineering management
to elucidate the generational and geographical trade-offs implicit
to future water resources systems. Quantifying these trade-offs
and their associated uncertainties motivates a tremendous need
for advances in fitness approximation, parallelization, multiobjec-
tive search, interactive optimization, and multialgorithm search
frameworks (e.g., see Vrugt and Robinson 2007). Fundamental to
the advancement of the use and value of EAs in environmental
and water resources: (1) there is an immediate need to formally
characterize operational successes and failures of EAs used in
water resources engineering practice and (2) the water resources
field should begin to explore a broader range of policy/design
problem classes that have a history of dealing with highly uncer-
tain nonstationary environments (i.e., robust optimization, combi-
natorial scheduling, game theory, control theory, etc.). In
combination, addressing these two challenges will serve to bridge
the existing research summarized in this paper to practice while
also providing opportunities for researchers to continue to expand
the size and scope of water resources problems that can be ad-
dressed using future innovations in EC.
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