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Abstract

Water distribution systems (WDSs) exhibit intricate, nonlinear behaviors shaped by both
internal dynamics and external influences. The incorporation of additional models, such
as contamination or population models, further increases their complexity. This study
investigated WDSs under various uncertainty scenarios to enhance system stability, robust-
ness, and control. In particular, we built upon prior research by exploring an Agent-Based
Modeling (ABM) framework integrated within a WDS, focusing on three types of uncertain-
ties: (1) adjustments to existing probabilistic parameters, (2) variations in agent movement
across network nodes, and (3) changes in agent distributions across different node types.
We conducted our analysis using the virtual city of Micropolis as a testbed. Our findings
indicate that while the system remains resilient to uncertainties in predefined probabilistic
parameters, substantial and often nonlinear effects arise when uncertainties are introduced
in agent mobility and distribution patterns. These results emphasize the significance of
understanding how WDSs respond to external behavioral dynamics, which is essential
for managing real-world challenges, such as pandemics or shifts in urban behavior. This
study underscores the necessity for further research into broader uncertainty categories
and emergent effects to enhance WDS modeling and inform decision-making.

Keywords: agent-based model; water distribution systems; uncertainty analysis

1. Introduction
Water distribution systems (WDSs) are highly complex due to nonlinear hydraulics

in looped pipelines. Beyond the mechanistic processes of water flows in pipe systems,
actors and organizations interact with the water system and manipulate infrastructure
components and adjust demands in response to system conditions. As a sociotechnical
system, the interactions of consumers, decision-makers, operators, and WDS infrastructure
lead to the emergence of hydraulic performance, including flows, pressures, and water
quality in the network [1]. Recent advances in residential water-demand agent-based mod-
els provide a comprehensive overview of how consumer behavior has been represented in
WDS simulations, highlighting both methodological approaches and data requirements [2].
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One key condition to examine is the impact of different uncertainty scenarios [3].
The decisions and behaviors of consumers can propagate to affect the infrastructure com-
ponents in unexpected ways. Uncertainty in behaviors can lead to disproportionate effects
on demands, flows, and pressure in the WDS. For instance, pandemic-induced shifts in
social-distancing policies have been coupled with hydraulic simulations to assess both
contamination risk and altered demand profiles during COVID-19 [4].

Uncertainty in WDS models may also arise due to missing information, such as
faulty sensor data, or from internal and external noise originating from various sources.
Water utilities must adapt their operations in such cases, often without prior preparation
for such uncertainties. Moreover, incorporating uncertainty into models is valuable for
calibration [5], allowing for model parameters to be adjusted to align with real-world
physical data. High-resolution smart-meter studies demonstrate how ten-minute-interval
demand records can refine nodal demand patterns within EPANET frameworks, further
underscoring the need to account for demand heterogeneity in sensitivity analyses [6].

It is important to distinguish between two related concepts [7–9]. Uncertainty analysis
focuses on quantifying the extent of uncertainty in a given variable, whereas sensitivity analy-
sis aims to identify the sources of uncertainty and assess how input uncertainties influence
output variations. This research is focused on the sensitivity analysis of a sociotechnical WDS.

Numerous studies have analyzed WDS behavior under uncertain conditions. Ref. [10]
highlighted the importance of such analyses for calibrating WDS models, representing real
physical systems, and supporting decision-making. Since uncertainty in WDS parameters
propagates to model predictions, understanding its effects is crucial. In this paper, we
follow a similar approach but with key differences. Agent-Based Modeling (ABM) ap-
proaches have been developed to simulate the emergence of infrastructure performance
and population behaviors that occur in sociotechnical WDSs. ABM was coupled with
hydraulic simulation models to assess the effect of exposure and communication during
contamination events [1,11], adoption of water reuse [12], and working from home during
pandemics [13,14]. We used an ABM approach in this research, though we did not calibrate
or compare ABM parameters with true values. Instead, we used an already near-realistic
model, introducing uncertainties into ABM parameters rather than WDS parameters. We
then assessed how these uncertainties affect selected model prediction parameters after
simulating the ABM within a WDS. Similar to [10], we also analyzed the variance in model
prediction uncertainty.

Ref. [15] explored methods to quantify and reduce uncertainty in WDS models for real-
time control. The study examined uncertainties across multiple aspects: within the model
itself, its parameters (e.g., pipe roughness), and measurement uncertainties in model inputs
and outputs. While this aligns with [10], as both address uncertainties within the WDS
model, our approach differs. We focused on an external model embedded within the WDS,
analyzing its dynamic interactions with the system. Other studies have similarly examined
uncertainties in WDS models. Refs. [16,17] discuss uncertainties within WDS models,
with [16] distinguishing between two types: random (due to parameter variability) and
fuzzy (due to incomplete information). Our study primarily deals with random uncertainty.

Unlike these studies, which focus on internal WDS uncertainties, we extend our investi-
gation to a broader scope—examining the impact of external uncertainties on WDS behavior.
This distinction is crucial, as external behavioral models, such as those related to COVID-19
responses or general urban movement patterns, can significantly influence WDS perfor-
mance. For instance, during the spring 2020 COVID-19 lockdown, many utilities in North
America and Europe reported residential water use increases of 20–30 percent during day-
time hours, while commercial and industrial demand plunged by up to 40 percent [13,18].
Such abrupt demand shifts not only altered nodal pressure patterns but also drove unex-
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pected changes in water age and quality, as lower turnover in certain mains led to chlorine
decay and elevated microbial risk. By embedding social–behavioural models—capturing
when and why people stayed home, shopped less, or adopted remote work—into hydraulic
simulations, we can better anticipate these emergent pressure and quality excursions and
inform adaptive operational strategies (e.g., targeted flushing or pressure adjustments).

Whereas previous research primarily addressed technical uncertainties, our study
emphasizes social factors and their effects on system outcomes. Specifically, we ana-
lyze land-use patterns [19], COVID-19 transmission, and workforce movement across
network nodes.

Uncertainty has also been explored within ABM studies, as seen in [20,21]. Several
ABM studies across various disciplines have conducted uncertainty sensitivity analyses
comparable to ours. Ref. [22], for example, assumed a probability distribution function
(PDF) over 20 ABM parameters, using a uniform PDF to represent maximum uncertainty.
This choice reflects a state of minimal knowledge about uncertainty, often measured through
entropy. Their results indicated a negligible effect of uncertainty on selected performance
variables—similar to our findings. However, ref. [23] adopted a different approach, assign-
ing various PDFs suited to specific variables of interest. Their study introduced uncertainty
into contamination event parameters within a WDS, focusing on physical infrastructure
modeling. In contrast, our research introduces uncertainty into population dynamics and
agent behaviors within the WDS network. Ref. [24] examined uncertainty within the social
dimensions of ABM, distinguishing between input (epistemic) uncertainty, which pertains
to uncertainties in model parameters, and model uncertainty, which involves uncertainties
in agent interactions and assumptions. Our study primarily focuses on model uncertainty,
assessing how external behavioral factors impact WDS dynamics.

Finally, by introducing several real-world-driven behavioral uncertainties into
an ABM–WNTR coupling, we assess not only the robustness of standard probabilis-
tic parameters (see the full description of the predefined probabilistic parameters in
Sections 3.4 and 3.4.1, and in Table A6) but also the sensitivity of the system to shifts
in daily routines and land-use patterns. These insights are critical for utilities preparing for
future disruptions—whether pandemics, major sporting events, or extreme weather—that
fundamentally rewire how customers interact with the network.

2. Extension of Previous Research
This study extends the work of Vizanko et al. [14], which analyzed a modeling frame-

work for simulating behavioral and demand changes during pandemics and assessing their
impact on water quality in distribution systems. The framework utilizes Agent-Based Mod-
eling (ABM) to represent individual behaviors and interactions, coupled with hydraulic
simulations to evaluate water flow and quality. Additionally, it incorporates a susceptible–
exposed–infected–recovered (SEIR) model for disease transmission and a Bayesian Belief
Network (BBN) for predicting the adoption of preventive behaviors.

Building on this framework, our study examines system behavior under various
uncertainty scenarios. Specifically, we explore uncertainties in (1) modulating existing
probabilistic parameters, (2) agent movement across network nodes, and (3) changing
the distribution of agents across different node categories. The primary objective of this
study was to evaluate the ABM system’s response across different performance metrics
under these uncertainty conditions. In particular, we aimed to identify conditions under
which the system remains highly robust and conditions where it exhibits greater sensitivity.
Our hypothesis suggested that the system should perform robustly under scenarios it was
designed for, while unexpected scenarios may lead to variations in its response. To test this,
we applied the following uncertainty methods:
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1. Applying a uniform distribution to existing probabilistic parameters in the ABM system.
2. Introducing new variables that influence agents’ movement decisions within

the network.
3. Modifying the distribution of agents among different node types.

Our key findings are as follows:

1. The system remains robust to uncertainty in existing probabilistic parameters, as ex-
pected, since it was designed for such variations.

2. The system exhibits different behaviors when agent movement is altered.
3. The system’s response becomes noticeably different—and even nonlinear—when

agent distributions across node types are modified.

The latter two findings aligned with expectations, as the system was designed to
respond differently under these conditions.

Finally, this paper is structured as follows:

1. Methods—Details the methodologies used in our analysis.
2. Case Study and Scenarios—Describes the various scenarios and conditions applied

to assess uncertainty.
3. Results—Presents the findings from implementing different uncertainty methods.
4. Discussion and Conclusions—Summarizes key insights and implications of our results.

3. Methods
This section describes the ABM framework used for our simulations and outlines

the different uncertainty methods applied to analyze how the ABM system responds to
these uncertainties.

3.1. Overview
3.1.1. Purpose

The purpose of the ABM is to examine the effect of the adoption of COVID-19 preven-
tion measures on demands and WDS performance. The ABM models the transmission of
COVID-19, adoption of prevention measures, and water flows in a pipe network (Figure 1).
The objective of this research is to evaluate the ABM simulation under various scenarios,
particularly focusing on uncertainty conditions. Uncertainty is introduced in three ways:
(1) modulating pre-existing probabilistic parameters, (2) altering agent movement dynam-
ics, and (3) changing the distribution of agents across different node types (commercial,
industrial, and residential).

Figure 1. AABM framework depicts a sociotechnical WDS that couples consumer behaviors with
water infrastructure to depict social distancing, disease transmission, communication, and demand
changes during the COVID-19 pandemic.
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3.1.2. Entities, State Variables, and Scales

The symbols used throughout this study, including work and home nodes, are listed
in Table A5. Additionally, key decision variables such as working from home (WFH),
dining out less, grocery shopping less, and personal protective equipment (PPE) usage are
outlined in Table A6.

Agents represent individual water consumers, exerting demand at their respective
nodes during each time step. Agents are mobile and travel among home, work, and leisure
nodes. Each agent is characterized by multiple parameters, including COVID-19 trans-
mission thresholds, and assigned home and work nodes and probabilities of interacting
with television and radio (Table A5). Furthermore, agents have state variables that evolve
throughout the simulation, encompassing COVID-19 status indicators, social distancing
behavior decisions, and COVID-19 transmission timelines (Table A6). The COVID-19
status indicators include personal infection status, the infection status of friends and family,
and exposure to COVID-19-related media.

The environment is defined by the hydraulic network, which determines the spatial
distribution of nodes and classifies them as residential, commercial, or industrial. Residen-
tial nodes serve as home locations for agents, industrial nodes function as work locations,
and commercial nodes are used for both work and leisure activities. Water-use patterns are
specified in the hydraulic network file and vary according to node type.

3.1.3. Process Overview and Scheduling

The ABM process operates at multiple timescales: hourly, daily, and over the full
simulation period. The following activities occur hourly (denoted as Ht in Appendix B):
agent movement, COVID-19 transmission, water demand exertion, and interactions with
mass media. Processes such as disease progression, adoption of preventive measures,
and updates to demand patterns occur daily (denoted as Dt in Appendix B). Finally,
the hydraulic simulation is executed at the conclusion of the 90-day simulation period
(denoted as Step S1 in Appendix B).

3.2. Design Concepts
3.2.1. Theoretical and Empirical Background

COVID-19 Transmission: The transmission dynamics of COVID-19 in this framework
are based on the SEIR model implemented in the ABM tool Covasim [5]. The mathematical
relationships and parameter values defining the SEIR model were adopted from Covasim
and integrated into our framework.

The SEIR model simulates disease spread based on agent interactions. When suscepti-
ble agents come into contact with infected agents, they have an age-dependent probability
of becoming exposed. Once exposed, an agent transitions through different stages—pre-
symptomatic or asymptomatic—also based on age-dependent probabilities. The duration
spent in each stage follows a log-normal distribution, with distribution characteristics
derived from multiple sources [5].

Asymptomatic agents progress directly to the recovered stage, where they remain for
the rest of the simulation. Symptomatic agents, on the other hand, may experience disease
progression through mild, severe, and critical stages, with each transition governed by
age-dependent probabilities. Mild and severe cases recover after a designated period, while
critical cases have a probability of progressing to a fatal outcome. Once recovered, agents
no longer transmit or contract the disease.

A comparison of transmission dynamics between this framework and Covasim
showed minimal discrepancies, validating the accuracy of our implementation.
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Adoption of Prevention Measures: The adoption of prevention measures (PMs) is
modeled using Bayesian Belief Networks (BBNs), which capture causal relationships be-
tween key variables. In this study, a Naïve Bayes classifier structure is employed to predict
PM adoption based on factors such as an agent’s COVID-19 status, the status of their friends
and family, and exposure to COVID-19-related media. Since these factors vary individually,
the BBNs function as personalized decision-making models. Adoption decisions for each
prevention measure are determined by the posterior probability generated by the BBN,
which is continuously updated based on changes in the agent’s health status, social network
conditions, and media exposure.

BBNs consist of a directed acyclic graph (DAG) defining variable relationships and
conditional probability tables (CPTs) quantifying these relationships. By explicitly modeling
dependencies and uncertainties, BBNs provide insights into how input variables influence
adoption decisions. The BBN models utilize a Naïve Bayes classifier with forward selection
to predict the adoption of specific PMs. Models for remote work and personal protective
equipment (PPE) adoption incorporate Protection Motivation Theory (PMT) variables,
while models predicting reduced grocery shopping and dining out rely on demographic
and perception variables (Table A9) due to better performance metrics.

The DAGs of the four BBN decision-making models are illustrated in Figures A2–A5,
while their performance metrics are detailed in Table A11.

Demand Changes: Demand changes are derived from empirical data published by
Pesantez et al. [18], which includes hourly water demand records from approximately
20,000 smart meters covering both pre-pandemic and pandemic periods. Demand patterns
were extracted from data collected during the first week of the pandemic (23–29 March
2020) and applied to all residential nodes. Compared to pre-pandemic patterns, morning
and evening demand peaks shifted toward midday, leading to a flattened and overall
reduced residential demand profile.

3.2.2. Individual Decision-Making

Agents make decisions to adopt social distancing behaviors based on their COVID-19
status and media exposure variables.

3.2.3. Interaction

Through the COVID-19 transmission model, infected agents expose susceptible agents
at the node they currently occupy.

3.2.4. Heterogeneity

Agents are initialized with heterogeneous parameters and state variables, as detailed in
Tables A5 and A6. This heterogeneity influences COVID-19 transmission, agent interactions,
social distancing behaviors, locations, and, subsequently, the variability in nodal water
demand and water age.

3.2.5. Stochasticity

Even without the additional uncertainty analyses conducted in this study, the base
ABM system incorporates stochasticity. Agent mobility is modeled stochastically,
with agents randomly selected to move at each time step, while their destination nodes are
predetermined during initialization. Several stochastic parameters are assigned to each
agent at initialization (Table A6). Stochasticity is also embedded in COVID-19 contraction,
progression through SEIR stages [5], and the probabilistic adoption of prevention measures
based on BBN-generated posterior probabilities.
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3.2.6. Observation

The number of agents in each stage of the COVID-19 transmission model (susceptible,
exposed, infected, recovered, deceased) is monitored hourly. Additionally, water demand
and water age are tracked for each node in the network. The adoption of prevention
measures significantly alters disease transmission, resulting in changed water demands,
modified flow patterns, and localized increases in water age.

3.3. Details
3.3.1. Implementation Details

Agents were implemented as classes using object-oriented programming in Python 3.8.
These classes encapsulate both the attributes and methods defining each agent’s state and
behavior. Hydraulic simulation was conducted using the Water Network Tool for Resiliency
(WNTR), which is built upon EPANET version 2.2 [25,26].

3.3.2. Initialization

COVID-19 infection thresholds are initialized using a log-normal distribution
(Table A5), and 0.1% of the population is initially set as exposed (S = exposed). Each
agent is randomly assigned a home node and a work node.

3.3.3. Input Data

The model requires several input datasets, including the following:

• COVID-19 transition values.
• Risk perception variables for Bayesian Belief Network (BBN) training.
• Hydraulic network data, including pipes, pumps, tanks, valves, and demand patterns.

3.3.4. Movement Submodel

Agent movement follows two primary bi-directional pathways between node types
(Figure 2):

• Residential to Commercial Movement: Agents move between residential and com-
mercial nodes based on their prevention measure (PM) adoption:

– Agents not adopting the dine-out PM move to café nodes (subset of commer-
cial nodes).

– Agents not adopting the grocery PM move to grocery nodes (subset of commer-
cial nodes).

– Agents not adopting the work-from-home (WFH) PM move to any commer-
cial node.

Movement from commercial to residential nodes (i.e., returning home) has no restrictions.
• Residential to Industrial Movement: Initially, a predefined number of agents

(e.g., 1092) are placed at industrial nodes. Every 8 h, half of these agents (1092/2) are
replaced with agents from residential nodes at specific time steps: 1:00, 9:00, and 17:00.
Only agents that do not adopt the WFH PM move to industrial nodes. Movement
from industrial to residential nodes (returning home) has no restrictions.
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Figure 2. Agent movement among nodes.

3.4. Uncertainty Submodel

The ABM framework incorporates multiple uncertainty factors to evaluate their impact
on system behavior. These modifications include the following:

1. Number of Daily Contacts: Uncertainty is introduced in the number of agents poten-
tially exposed to infectious agents during movement between nodes.

2. Exposure Rate: The probability of exposure for selected agents is modeled
with uncertainty.

3. Media Exposure: The probability of agents consuming COVID-19-related information
via television or radio is subject to uncertainty.

4. Uncertainty in BBN Output: The BBN output determining PM adoption is proba-
bilistic rather than deterministic. Agents update their status based on this probability,
introducing uncertainty.

5. Exposed Agents’ Condition: Uncertainty is incorporated into the process of determin-
ing the health condition of newly exposed agents.

6. Worker Mobility: While movement between node types follows specific rules, excep-
tions allow agents to move from residential to commercial nodes for non-work-related
purposes, with a probabilistic constraint.

7. Node Type Distribution: The initial distribution of agents across industrial, café,
commercial, and residential nodes is subject to uncertainty.

3.4.1. Uncertainty in COVID-19 Transmission Model

This section describes how uncertainty was introduced into the COVID-19 transmis-
sion model.

The threshold value governing transmission probability is sampled from a predefined
range. For example, a threshold of 0.5 may vary within [0.4, 0.6] or [0.3, 0.7]. Alternatively,
noise can be added using an adjustable function, such as ran < 0.5 + 0.2 · noise, where
parameters (0.5, 0.2) define the base probability and scaling factor, and noise follows a
mean-zero distribution.

Table A6 lists all state variables in the ABM, highlighting key parameters (probabilistic
parameters) modified in the COVID-19 transmission model:

• Exposure rate (er).
• Non-residential exposure rate (enr).
• Probability of listening to the radio (PR).
• Probability of watching TV (PTV).
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The primary objective was to evaluate the robustness of the ABM system under uncer-
tainty. We focused on existing areas in the model where some level of fixed uncertainty
already existed. Specifically, we examined cases where a variable is assigned an initial
value, a uniformly distributed random number ran ∼ U(0, 1) is generated, and the vari-
able is updated if ran falls below a predefined threshold. Otherwise, the initial value
remains unchanged.

3.4.2. Worker Mobility

Agent movement rules were previously outlined in Figure 2. Initially, only workers
traveled between residential and commercial nodes. To account for non-work-related
movement, a new probability variable was introduced, allowing agents to move from
residential to commercial nodes with some probability.

3.4.3. Node Type Distribution

The original ABM code assumed a fixed distribution of agents across node types
(industrial, café, commercial, and residential). To incorporate uncertainty, we introduced
stochastic variation in agent distribution among these node types. This modification aligns
with the broader objective of testing how uncertainty influences system behavior. Rather
than introducing uncertainty indiscriminately, we targeted areas where it could significantly
affect outcomes. The variability in node distribution represents different city structures—for
example, industrial-heavy, residential-heavy, or commercially dominant urban environ-
ments. To ensure fair comparisons across simulations, the total number of agents in the
system remains constant while their distribution across node types varies stochastically.

3.4.4. Statistical Significance

In our sensitivity experiments, each uncertainty scenario was run using the same
set of pre-assigned random seeds and noise streams as the base (no-uncertainty) model.
By preserving the exact stochastic realizations across paired simulations, we ensured
that any observed differences in output—whether in SEIR peaks, water age, or demand
patterns—arose solely from the modification of model structure or parameter values, rather
than from sampling variability. This “organized seeds” approach is a common practice
in agent-based sensitivity studies (e.g., [20,22]) and obviates the need for large-sample
hypothesis testing: if the mean difference between two paired runs exceeds the natural
run-to-run variation under identical seeds, it reflects a structural sensitivity rather than
random noise. For smaller effects—where paired differences remain within the inher-
ent stochastic envelope—we acknowledge that these perturbations are indistinguishable
from background variability, reinforcing our conclusion that the system is robust to such
parameter changes.

4. Case Study and Scenarios
For our simulations, we utilized the Micropolis [27] virtual city (Figure 3). The Mi-

cropolis water system consists of 458 terminal nodes, representing a population of approxi-
mately 4600 residents. These nodes include

• 434 residential connections,
• 15 industrial connections,
• 9 commercial connections.

The total daily water demand is 4.54 ML/day, with distinct diurnal patterns assigned
to each node type.
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Figure 3. Micropolis WDS. Each node (black dot) in the network represents an individual building.

To facilitate scenario comparisons, we used organized simulation seeds corresponding
to specific simulation indices. In the following, Table 1 presents the summary of all
generated modifications in the ABM model to include uncertainties.

Table 1. Summary of ABM modifications incorporating uncertainty.

Component Without Uncertainty With Uncertainty

Agent Movement Expose exactly k agents
with probability p

Expose k± ϵ agents with
probability p± ϵ

Media Exposure Fixed probability p for
agents listening to radio/TV Probability varies as p± ϵ

COVID-19 Status
Probability p for (1)
exposure condition and (2)
status from BBN output

Probability varies as p± ϵ

Worker Mobility No movement for non-work
purposes

Movement allowed from
residential to commercial
nodes with probability p

Node-Type Distribution Fixed agent distribution Randomized agent
distribution

5. Results
5.1. Sensitivity Analysis of Uncertainty in ABM Parameters

To assess the impact of uncertainty, we compare simulation outcomes using appropri-
ate measures:

• Age/Demand: Final simulation value difference.
• Susceptible (S), Recovered (R), and Work-from-Home (wfh) in SEIR: Final value

difference.
• Exposed (E) and Infected (I): Peak difference.

Uncertainty was introduced by applying uniform variations around the original
probability, as described in Section 3.4.1. Due to negligible effects at smaller ranges, we
compare the original ABM code with an uncertainty range of [0%, 200%] around the original
probability (100%). This ensures the original probability remains the mean value, allowing
for a fair comparison.

Figure 4 presents SEIR performance measures under different PMs and uncertainty
locations in the ABM code. A bar chart format is used for clarity, while detailed numerical
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comparisons are available in Table A3 in the Appendix A. The bars represent the relative
difference (in peaks or final values) between the exact model and the uncertainty-modified
model at specific locations in the code. Notably, agent movement parameters exhibit higher
variations than other locations. To improve visualization, all agent movement differences
have been scaled down by a factor of 5. Figure 4 shows that when scaled evenly, agent
contacts have the most significant impact across all prevention measures.

Figure 4. Comparison of SEIR performance measures for different PMs and uncertainty locations in
the ABM code. For Exposed (E) and Infected (I), we use peak differences, while for Susceptible (S),
Recovered (R), and Work-from-Home (wfh), we use final value differences.

Next, we present a similar bar chart (Figure 5), but instead of SEIR measures, we
compare demand and age. As before, the comparison is presented in a bar chart for clarity,
with detailed numerical results available in Table A4. Since the values for contacts are
significantly higher than those in other locations, they are scaled down by a factor of 5
for better visualization. Figure 5 includes only the work-from-home (“wfh”) and “all”
cases, as the differences in other PM scenarios were negligible. However, the full bar chart
is available in the Appendix A (Figure A1). Similar to the previous figure, when scaled
evenly, agent contacts have the largest effect. Additionally, we observe a strong impact of
other PMs at commercial nodes, influencing both age and demand. Next, we analyze the
emergence observed in these figures.
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Figure 5. Comparison of demand and age performance measures for different PMs and uncertainty
locations in the ABM code. We use final value differences.

Analysis

Table A3 shows that in SEIR results, the “wfh” column remains zero for all PM
scenarios except the “wfh” case. This is expected, as the work-from-home measure was not
applied in the other scenarios (“grocery,” “dine,” and “ppe”). A common effect can be seen
across all SEIR results. Figure 6 helps explain why changes in performance measures occur
when uncertainty is introduced in the number of daily contact agents.

(a) (b)

Figure 6. Impact of daily contact uncertainty on SEIR measures. (a) Selected agents as a function of
available agents; (b) number of infected agents and average number of agents per node.

In the original model (without uncertainty), the number of agents at a specific node,
agents_at_node, is compared to the predefined parameter for daily contacts, daily_contacts.
If agents_at_node exceeds daily_contacts, a random selection of daily_contacts agents is
exposed. Otherwise, all agents at the node are exposed. Introducing uncertainty affects
this process, leading to variations in exposure rates and subsequent SEIR dynamics.

In the modified code that incorporates uncertainty, we compare agents_at_node with
2 · daily_contacts.
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- If agents_at_node is smaller, a random number of agents is selected uniformly from
the range [0, agents_at_node− 1] to be exposed.

- Otherwise, a random number of agents is selected uniformly from the range
[0, 2 · daily_contacts− 1] to be exposed.

In the specific case shown in Figure 6, we use daily_contacts = 30.
Figure 6a illustrates the number of selected agents as a function of the total available

agents at the node. Figure 6b presents several simulation outputs, averaged over multiple
simulation runs. Specifically, it shows the percentage of infected individuals over the
simulation period, with each plot displaying the mean and a standard error band around
it. The orange and blue curves compare the original and uncertainty-integrated models,
respectively, while the green curve represents the average number of agents per node,
considering only commercial and industrial node types.

We observe a fundamental challenge in comparing the original and modified codes,
as they do not share the same mean. For instance, when fewer than 60 agents are present
at a node, the uncertainty-based model yields a lower mean, whereas above 60 agents,
both models exhibit the same mean. As a result, the final number of selected agents is not
directly comparable. This distinction makes daily_contacts different from other uncertainty
sources, as its mean differs. This effect is evident in Figure 6b, where around 60 agents
per node (on average) correspond to the vertical dotted line crossing the green curve.
At this threshold, the orange and blue curves begin to diverge, illustrating the impact of
the differing mean values. Since fewer than 60 available agents lead to a lower selection
count in the uncertainty-based model, the infected percentage is reduced. Another possible
explanation for this decrease is a lower exposure rate due to reduced social interactions
and media exposure.

A decrease in the number of infected individuals (I) results in more people remaining
in the susceptible category (S), as fewer daily contacts limit exposure. Alternatively,
following Vizanko et al. [14], where deceased individuals are excluded from the model (with
minimal numbers per thousand), if I decreases, then E and S increase while maintaining the
conservation law S + R = 1 (neglecting the deceased). Given enough simulation time, most
infected individuals eventually recover. At any moment, S + E + I + R = 1, ensuring that
every agent is in one of these states. Additionally, Table A4 highlights that in the “wfh” and
“all” cases (per Vizanko et al. [14]), the most significant impact on age distribution occurs
in these scenarios. For the remaining PMs, age and demand remain relatively constant.
Ultimately, our results indicate that the system is resilient to the introduced uncertainty,
likely because it applies uncertainty to an already uncertain system.

5.2. Adding Non-Workers to Commercial and Café Nodes

Another method for analyzing uncertainty involved modifying agent movement
patterns. Figure 7 illustrates a water network with different node types (distinguished by
colors). It depicts both the previous scenario, where only workers move from residential
to commercial nodes, and the updated scenario, which allows non-workers to move from
residential to commercial nodes (represented by the brown arrows). In the original model,
agents moved between nodes only when required, always including residential nodes in
their movement. In residential←→industrial transitions, half of the total agents working in
industrial nodes return home, while an equal number of new agents begin their shift. If the
work-from-home (wfh) policy applies, the affected agents remain in their residential nodes
rather than commuting.

Previously, only workers commuting for employment traveled to commercial nodes,
and all agents could return to their residential nodes. However, in the modified scenario,
a predefined percentage of non-workers are also allowed to move from residential to com-
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mercial nodes. A lower percentage parameter results in more non-workers traveling to
commercial nodes, increasing the total number of agents and, consequently, demand at
commercial locations. This shift slightly affects the number of wfh agents, as increased
commercial activity leads to higher infection rates, triggering more work-from-home deci-
sions through Bayesian Belief Network (BBN) modeling. Despite this, the overall demand
remains nearly constant, implying fewer agents in residential nodes. However, the number
of agents per node in industrial zones remains unchanged. We hypothesize that this oc-
curs because wfh adoption remains minimal, preserving the steady transfer rate of agents
between residential and industrial nodes.

Figure 7. Agent movement among nodes, including non-workers traveling from residential to
commercial nodes.

Figure 8 presents aggregated age plots, representing the total age across all node types
(commercial, industrial, and residential). It explores two cases: Figure 8a examines a sce-
nario where the movement of agents to cafés is fixed, while the distribution of commercial
agents varies. Conversely, Figure 8b maintains a fixed commercial agent distribution while
modifying the movement of agents to cafés. Each subplot includes four cases corresponding
to different agent distribution patterns. As observed in Figure 8, modifying café percentages
while keeping commercial percentages constant has little to no impact. However, the oppo-
site scenario—fixing café percentages and adjusting commercial percentages—produces
noticeable changes in the results. This disparity arises because there are significantly fewer
café nodes than commercial nodes. Consequently, the number of agents at café nodes is
much lower than at commercial nodes. Thus, variations in café movement percentages
translate to a small number of affected agents, insufficient to influence the final outcomes.

(a) (b)

Figure 8. Comparison of aggregated age plots under different distributions of moving agents. (a) Café
fixed and commercial changing percentages; (b) commercial fixed and café changing percentages.
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Demand Analysis for Varying Commercial Percentages

After establishing that adjusting café percentages has negligible effects on various
measures, we focus on the impact of commercial agent percentages. Specifically, we analyze
demand variations. Figure 9 presents these results, mirroring the conditions in Figure 8b,
where the café distribution remains fixed at 30%, while the commercial distribution varies
from 0% (no working) to 100% (only working). Unlike Figure 8, which aggregates results,
Figure 9 presents separate demand plots: Figure 9a illustrates demand in the commercial
sector, while Figure 9b focuses on demand in the residential sector.

(a) (b)

Figure 9. Demand variations across sectors for different commercial agent distributions while
keeping café percentages fixed at 30%. (a) Demand in the commercial sector, (b) Demand in the
residential sector.

Figure 9 demonstrates the effect of increasing the proportion of working agents moving
from residential to commercial nodes. Higher movement percentages (e.g., 100%) indicate
that more agents attempt to commute to commercial nodes. However, under the Bayesian
Belief Network (BBN) model, these agents are more likely to choose to stay home and
work remotely to minimize COVID-19 exposure. As a result, demand at commercial nodes
decreases over time, while demand at residential nodes rises. Conversely, when fewer
agents intend to commute to commercial nodes for work (lower movement percentages,
e.g., 0%), more agents travel to commercial nodes regardless of COVID-19 considerations.
This outcome aligns with the structure of the ABM framework, where agent movement
is predefined. Although not explicitly depicted, industrial nodes remain unaffected by
variations in working agent percentages shifting from residential to commercial nodes. This
stability occurs because industrial workplaces follow fixed shift exchanges, irrespective of
changes in commercial movement dynamics.

5.3. Changing the Distribution of Agents in the Network

We conducted experiments to explore how the distribution of agents across the net-
work affects outcomes. To ensure a fair comparison, we maintained a similar total agent ca-
pacity across all nodes while varying the distribution of agents among different node types.

Scenarios for Different Distributions

The selected distributions reflect realistic scenarios. The same rule applies: no agents
are assigned to non-residential nodes at night, except for industrial nodes with night
shifts. We kept the agent count stable in cafés and commercial nodes. The distribution was
primarily based on the number of agents in industrial nodes, redistributing them between
industrial and other node types.
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In the following, we describe the scenarios for different distributions, and then present
in Table 2 the time-averaged agent capacity distributions accross different node types for
each of these scenarios.

1. Less-ind: Fewer agents in industrial nodes, leading to an increase in cafés, commercial,
and, especially, residential nodes.

2. Regular: The default distribution, representing a typical city.
3. More-ind: More agents in industrial nodes, resulting in fewer in cafés, commercial,

and residential areas, resembling an industrial town.
4. Much-more-ind: A heavily industrialized area designed primarily for work, with min-

imal residential accommodations.

Table 2. Time-averaged agent capacity distributions across different node types.

Distribution Industrial Café Commercial Residential

less-ind 92 116 1270 3128
regular 1092 59 939 2516
more-ind 2092 27 543 1944
much-more-ind 3092 20 422 1071

Figures 10 and 11 depict age and demand variations for different distributions.
Figure 10 presents results for 100% and 30% of agents moving to commercial nodes, while
Figure 11 focuses on the industrial sector at 100%. As industrial presence increases, fewer
agents visit commercial nodes, opting to work from home. This results in a significant
decrease in water age. Interestingly, Figure 10 shows that demand also declines, despite
typically having an inverse relationship with water age. This trend is observed at both 100%
and 30% worker movement levels. However, in the industrial sector, demand and water
age follow the expected inverse correlation, as shown in Figure 11. A possible explanation
is that commercial nodes are centrally located in our water network (Micropolis). The main
water supply first passes through commercial nodes before reaching industrial areas. High
demand in the bottom right of the network, coupled with low demand in commercial areas,
leads to a lower-than-expected water age at commercial nodes. This is due to significant
flow driven by downstream residential demand. This effect is specific to the given network
configuration. Variability in agent distribution results in nonlinear and unpredictable
outcomes due to complex interactions within different networks.

(a) Age at commercial, 100% (b) Demand at commercial, 100%

Figure 10. Cont.
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(c) Age at commercial, 30% (d) Demand at commercial, 30%

Figure 10. Age and demand plots for the commercial sector, comparing distributions at 100% and
30% of workers moving to commercial nodes.

(a) Age at industrial, 100% (b) Demand at industrial, 100%

Figure 11. Age and demand plots for the industrial sector at 100% of workers moving to commer-
cial nodes.

6. Discussion
6.1. Results Discussion

Most of the results presented in Section 5.1 align with expectations and are predictable,
even in cases where differences are observed, such as daily contacts. This is because the
ABM for WDS was intentionally designed to exhibit robust behavior, even under increasing
uncertainty in parameter selection. Additionally, the observed variations are likely due to
the introduction of uncertainty into an already uncertainty-embedded model. In the case of
daily contacts, it may initially appear that uncertainty introduces some effects. However,
upon further analysis, these effects are attributed to differences in mean comparisons rather
than actual behavioral changes. Overall, the ABM system demonstrates resilience, even
under scenarios where increased uncertainty is applied to its parameters.

Significant effects were primarily observed in cases where uncertainty was not orig-
inally embedded. These include the movement of non-workers to commercial and café
nodes (Section 5.2) and changes in agent distribution across the network (Section 5.3).
The most pronounced effects were seen in the movement of non-working agents to com-
mercial nodes, primarily because their numbers far exceeded those moving to café nodes.
Consequently, we focused more on analyzing agent movement to commercial nodes.
The key observation was that agents intending to work remained at home when the work-
from-home (WFH) policy was applied, leading to lower demand at commercial nodes.
Conversely, agents moving for non-work purposes were unaffected by WFH policies,
resulting in increased movement to commercial nodes and a higher COVID-19 transmis-
sion risk. This, in turn, increased demand at commercial nodes. In all cases, demand
in residential nodes complemented that in commercial nodes, assuming no changes in
residential←→industrial movement patterns. When analyzing the impact of changing
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agent distribution by node type (Section 5.3), we found the outcomes to be more challeng-
ing to explain due to the network’s complex, nonlinear interactions. The spatial distribution
of nodes within the network plays a crucial role, making predictions difficult.

It is important to note that all uncertainty scenarios were designed to mimic realistic
conditions. For example, it is reasonable to assume that agents move to commercial nodes
not only for work but also for shopping. Similarly, changing agent distributions within
the network represents different types of cities—some being more industrial while others
more commercial or more residential. While other uncertainty cases could be explored,
their practical relevance to real-world WDSs is not guaranteed.

In Section 5.2, when examining the uncertainty effects in the movement of non-workers
to commercial and café nodes, we found that the greatest impact occurred when agents
moved to commercial nodes. This is due to the significantly larger number of agents in
commercial nodes compared to café nodes. Furthermore, WDS performance is highly
dependent on the configuration of the infrastructure, particularly when uncertainty is
introduced into the distribution of agent types within the network.

6.2. Emergence in Complex Systems

Water distribution systems function as sociotechnical systems, where interactions
between human behavior and infrastructure influence system performance. Changes in
customer demand directly impact infrastructure behavior, sometimes leading to system
transitions that are unpredictable or unexpected due to dynamic feedback loops and
adaptive behaviors. Emergence refers to system-level behaviors, structures, or patterns that
are not explicitly programmed but arise due to network interactions among agents and their
environment [28]. Emergence is classified into four categories, as defined by [29]: simple,
weak, strong, and spooky emergence. Simple and weak emergence can be predicted and
reproduced using simplified models. Strong emergence, in contrast, cannot be replicated
by simplifications of the system. Spooky emergence, the most unpredictable form, does not
appear in any model, even when simulating the full system with all details. ABM has been
applied to WDSs to provide new insights into system management. It enables capturing
emergent phenomena that would be difficult or impossible to predict. For example, during a
water contamination event, interactions between agents can cause shifts in water demand
that alter flow directions, exposing different populations to contaminants [11]. By analyzing
infrastructure through the interactions between technical and social systems, we gain a
better understanding of performance changes under different conditions.

In this study, we introduced uncertainty into the ABM to simulate water quality
changes in a small virtual hydraulic network, leading to emergent behavior. We found that
water demand and age remained robust despite uncertainty in COVID-19 transmission
parameters. However, emergent behavior was observed when we modulated the number
of agents moving for work and the total number of workers present in the network.
The primary objective of this research was to analyze the effects of uncertainty, rather
than directly studying emergence in a methodological sense. However, future research
could explore potential connections between uncertainty and emergent behavior.

6.3. Applicability to Real-World Systems

While the Micropolis testbed provides a convenient, controlled environment for isolat-
ing the effects of behavioral uncertainty, real utilities face additional challenges that may
influence the performance of our ABM–WNTR coupling. Actual networks exhibit a far
larger scale, more complex topology, variable pipe aging and roughness, and heterogeneous
meter-data quality. Moreover, obtaining reliable socio-behavioral inputs—such as time-use
surveys, mobile-phone movement data, or localized media-exposure rates—can be difficult
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and may require partnerships with academic or municipal data providers. To adapt our
methodology, practitioners should begin by calibrating the ABM to local demand traces
(e.g., smart-meter records) and validating predicted shift patterns (e.g., work-from-home
rates) against observed billing or telemetry data. Network modelers should also carry out a
preliminary sensitivity screening on hydraulic parameters (roughness, demand patterns) to
ensure the ABM-driven variations propagate meaningfully through their specific infrastruc-
ture. Finally, because large-scale coupled simulations can be computationally intensive, we
recommend an iterative approach: (1) pilot runs on key sub-areas or critical zones, (2) re-
finement of the behavioral model through stakeholder feedback, and (3) gradual scaling
to the full network. By following these steps, utilities can leverage our uncertainty frame-
work to improve preparedness for demand-shifting events—whether pandemics, mass
gatherings, or extreme weather—while managing the practical constraints of real-world
data and computation.

7. Conclusions
As an extension of previous research Vizanko et al. [14], this paper aimed to analyze

the ABM framework under different uncertainty scenarios, specifically in the COVID-19
transmission model, worker mobility, and node-type distribution of agents. We employed
different methods to introduce uncertainty. In the COVID-19 transmission model, we
incorporated uncertainty by varying the thresholds within the ABM code. For worker
mobility, we defined a new random variable to distribute agents’ movements between
residential, commercial, and café nodes based on working and non-working purposes.
In the node-type distribution, we applied different random distributions of a fixed total
number of agents across node types to represent uncertainty in agent distribution within
the network.

Our results demonstrate that the ABM system is robust when uncertainty is applied to
COVID-19 transmission parameters, which already possess an inherent probabilistic nature.
However, introducing uncertainty in agent movement led to significant changes in system
behavior, particularly in scenarios involving non-working agents moving to commercial
nodes. Further analysis revealed that agents intending to work tended to stay home when
the work-from-home (wfh) policy measure was applied, leading to decreased demand at
commercial nodes. Conversely, agents moving for non-working purposes were unaffected
by this policy, increasing demand at commercial nodes and potentially elevating COVID-19
transmission risks. Additionally, modifying agent distribution across node types produced
varied effects—some expected, others unexpected. Further examination suggested that
these outcomes resulted from complex interactions within the specific network structure.

In summary, the system exhibits robustness when uncertainty is applied to already
probabilistic parameters. However, uncertainty in agent movement has a significant impact.
Finally, different agent distributions, simulating various city types, exhibited surprising and
non-linear network-dependent effects. Future research could explore additional uncertainty
scenarios and potential emergence effects.
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Appendix A
The experiments of uncertainty in SEIR, conducted firstly in random seeds of batch

of simulations.

Table A1. Comparison of different performance measures for different performance measures
(columns) and uncertainty locations in ABM code (rows).

(a)

Exact vs. all wfh

Contacts 10.87 −35.10 −36.44 −28.82 −11.73 16.06 −31.95 −29.37 −27.45 −7.12

Exposure −3.06 5.15 3.67 8.99 2.18 1.94 −7.89 −4.26 −7.22 −3.00

Predicts −1.59 7.04 2.89 7.49 1.89 −0.06 −0.48 0.78 −2.90 0.57

Checks −0.06 −1.88 −5.43 1.31 −0.10 −2.00 −0.56 −0.97 0.04 −0.51

(b)

Exact vs. dine grocery

Contacts 43.17 −14.71 −13.14 −11.27 0 89.83 −15.66 −15.36 −15.87 0

Exposure 2.84 −6.08 −4.92 −3.11 0 5.44 −4.00 −3.50 −2.78 0

Predicts −4.52 1.90 1.83 1.70 0 2.66 −4.32 −3.47 −3.53 0

Checks 6.69 −0.66 −2.38 −1.13 0 12.62 −6.49 −7.42 −4.36 0

(c)

Exact vs. ppe

Contacts 20.56 −17.83 −16.93 −15.02 0

Exposure −3.83 5.61 3.69 6.54 0

Predicts -4.63 8.08 6.24 7.48 0

Checks 0.06 0.55 −2.18 3.27 0

In Table A2, due to randomness, some of the results have different means, while in
the organized ones, the mean is always the same. It takes even few simulations to produce
different means (because we see that the means are very close). We find irregularities
where the agents are being placed due to random seeds, which produce different agent
distributions among the nodes.

Table A2. Comparison of demand and age by different performance measures (columns) and
uncertainty locations in ABM code (rows).

(a)

Exact vs. all wfh

Contacts 29.68 0.68 −3.33 −0.92 52.60 9.70 −3.75 67.30 −0.52 −3.44 0.72 62.56 17.39 −1.68

Exposure −9.72 −0.16 −0.61 −0.39 −7.04 2.49 −0.17 20.26 −1.03 −2.51 0.51 30.52 13.89 −0.81

Predicts −15.51 −0.82 −0.03 0.17 −10.66 1.48 0.62 10.38 0.26 0.15 −0.08 5.34 1.68 −0.30

Checks 1.26 0.00 −0.34 −0.59 1.27 2.33 −0.77 6.97 −0.26 −1.60 0.31 7.34 11.16 −0.23
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Table A2. Cont.

(b)

Exact vs. dine grocery

Contacts −0.45 −0.96 −3.07 1.58 −0.05 −0.05 2.67 −2.11 −0.49 −0.37 1.61 −0.03 −0.14 2.71

Exposure −1.70 −0.49 −1.92 1.58 0.00 −0.06 2.64 0.55 0.06 0.77 −0.48 0.03 −0.27 −0.74

Predicts −3.04 −0.48 −1.00 2.82 −0.02 −0.10 4.73 1.33 0.28 −0.11 −1.75 −0.04 −0.01 −2.88

Checks −1.24 −1.16 −1.74 2.11 −0.02 0.07 3.51 −2.75 −0.84 −2.92 2.91 −0.04 −0.04 4.85

(c)

Exact vs. ppe

Contacts −1.86 −0.90 −2.18 2.76 −0.01 0.11 4.65

Exposure −1.67 −0.63 −1.34 2.38 −0.02 −0.05 4.05

Predicts −1.54 −1.13 −2.56 3.63 0.00 −0.25 6.20

Checks −1.61 −1.18 −3.48 3.56 0.01 0.03 6.01

Subsequently, we performed the same analysis only on organized seeds as explained
in Section 5.1.

Table A3. Comparison of SEIR by different performance measures for different PMs (columns) and
uncertainty locations in ABM code (rows).

(a)

Exact vs. all wfh

Contacts 8.26 −29.37 −30.54 −22.24 −7.32 18.14 −33.56 −31.34 −27.43 −5.65

Exposure −1.53 2.12 2.11 3.90 −0.27 −1.97 3.01 3.47 3.91 0.03

Predicts −2.27 5.52 4.61 5.26 0.04 −1.47 4.62 3.47 1.41 0.28

Checks −0.98 2.86 −0.42 2.97 −1.62 1.04 −1.32 −2.49 −1.74 −0.99

(b)

Exact vs. dine grocery

Contacts 41.92 −12.33 −11.66 −10.65 0 36.00 −8.95 −9.01 −5.84 0

Exposure 2.52 1.93 1.02 −0.99 0 −3.32 −1.36 −2.33 2.27 0

Predicts 0.02 1.04 1.70 0.24 0 3.92 −0.88 −1.47 −0.21 0

Checks 6.15 0.25 −1.21 −0.81 0 5.01 3.56 0.95 2.56 0

(c)

Exact vs. ppe

Contacts 24.81 −22.72 −23.03 −17.56 0

Exposure 1.64 −2.88 −4.60 0.44 0

Predicts −1.59 2.25 2.63 2.62 0

Checks 6.11 −5.20 −7.29 −1.88 0

The inner columns for each PM scenario are as follows: 1 = Susceptible; 02 = Exposed;
03 = Infected; 04 = Recovered; 05 = wfh = work from home. The rows represent the
difference in some measure between the exact code and the code with uncertainty in a
specific location in the code. The values in the SEIR table are the relative difference (either
in peaks or in final values).

Next, we present a similar table, only that the results are for demands and age instead
of SEIR.

The inner columns for each PM scenario are as follows: 01 = age, sector: Commer-
cial; 02 = age, sector: Industrial; 03 = age, sector: Residential; 04 = demand, aggregated;
05 = demand, section: Commercial; 06 = demand, section: Industrial; 07 = demand, sec-
tion: Residential.



Water 2025, 17, 1965 22 of 31

The rows represent the difference in some measure between the exact code and the
code with uncertainty in a specific location in the code. The values in Table A4 are the
average of the final values.

We also add a bar chart corresponding to Table A4 for a better visualization of the data.

Table A4. Comparison of demand and age by different performance measures for different PMs
(columns) and uncertainty locations in ABM code (rows).

(a)

Exact vs. all wfh

Contacts 17.89 −0.30 −2.52 −0.32 33.86 8.74 −2.18 48.67 0.14 −1.35 −0.14 40.04 6.60 −1.61

Exposure −5.05 0.12 0.05 0.03 0.42 −0.47 0.02 −11.72 −0.31 0.33 0.09 −5.23 −1.14 0.29

Predicts −0.45 −0.02 −0.36 −0.02 1.82 1.08 −0.14 −8.11 0.04 0.01 0.01 −2.36 −0.52 0.10

Checks 0.29 0.04 −0.42 −0.02 4.49 1.01 −0.26 5.88 −0.09 −0.24 0.04 6.08 1.07 −0.18

(b)

Exact vs. dine grocery

Contacts −0.71 0.02 −0.34 −0.01 0.00 −0.10 0.01 0.73 0.11 −0.32 −0.07 0.03 −0.03 −0.12

Exposure −0.40 0.11 −0.04 0.18 0.01 −0.28 0.36 0.30 −0.18 0.09 −0.07 −0.05 −0.01 −0.09

Predicts −0.08 0.05 0.34 −0.15 −0.03 −0.28 −0.18 0.42 0.16 −0.07 −0.15 0.00 −0.11 −0.23

Checks −0.35 0.23 0.40 −0.15 −0.07 0.01 −0.22 0.43 0.12 −0.26 −0.12 −0.02 0.19 −0.23

(c)

Exact vs. ppe

Contacts 0.17 0.14 −0.07 −0.11 −0.05 −0.05 −0.14

Exposure −0.04 0.11 0.36 −0.44 0.00 −0.10 −0.71

Predicts −0.40 0.07 0.01 0.04 −0.01 −0.10 0.10

Checks 0.37 0.09 0.27 −0.22 0.03 −0.01 −0.38

Figure A1. Comparison of SEIR by different performance measures for different PMs and uncertainty
locations in ABM code. We use final value differences.
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Appendix B. Process Scheduling Details
The following descriptions for Steps H1–H5 and D1–D5 are adapted from Vizanko

et al. [14].

Step H1. Agents move between residential and non-residential nodes. Agents move be-
tween nodes based on predefined node capacities and node type requirements.
Agents are assigned to move to and from non-residential nodes based on an
hourly total capacity at each non-residential node.

Step H2. Agents update COVID-19 status indicators. Agents update COVID-19 sta-
tus indicators, which represent the number of hours an agent spends in
the exposed, infected, severe, and symptomatic stages (texp, tin f , tsev, and
tsymp, respectively).

Step H3. Agents transmit COVID-19. Infected agents expose susceptible agents when
they occupy the same node. When an infected agent moves to a new node,
up to 10 susceptible agents at the new node are exposed based on the node’s ex-
posure rate (eres for residential nodes, enr for non-residential nodes in Table A5).

Step H4. Agents update mass media exposure. Agents receive information from TV
and radio based on probabilistic estimates that they use each form of media at
each hour of the day [11,31] (Table A8). The mass media exposure (Cmed) is a
binary number that is changed from 0 to 1 once an agent receives information
about COVID-19 at any time step, based on probabilistic behaviors to use radio
and TV.

Step H5. Agents exert water demand. The hourly demand at each node is calculated
based on the number of agents at each node as follows:

Bd′t,N =
KN

KN,cap
× Bdt,N (A1)

where Bd′t,N is the new demand for node N at time t, KN is the number of agents
at node N, KN,cap is the capacity of node N, and Bdt,N is the base demand.

The following steps are completed every 24 h:

Step D1. Agents update COVID-19 status. Agents update COVID-19 status state
variables (S, Ssymp, and Sin f ) based on their progression through disease
stages. Once the time in a stage exceeds an agent’s threshold for that
stage (e.g., texp > τexp, Table A5), the agent updates its COVID-19 status
(e.g., S = in f ected).

Step D2. Agents update personal experience with COVID-19. Once an agent enters
the infectious stage (S = in f ected), the agent updates the personal COVID-19
status (Cper) from “no” (value of 1) to “doctor confirmed and am still infected”
(value of 9) [14].

Step D3. Agents update friends and family COVID-19 status. An agent updates the
friends and family COVID-19 status (C f f ) when a peer agent enters the infec-
tious stage. The value (C f f ) can increase up to 7 to represent the number of
peers in an agent’s network that are infected. A value of seven corresponds to
survey responses that the person is “very much affected” by friends or family
testing positive or dying from COVID-19 [14].

Step D4. Agents update decision to adopt prevention measures. BBN models are applied
to calculate the probability of adopting each prevention measure based on mass
media exposure, personal COVID-19 status, and friends and family COVID-
19 status (Cmed, C f f , and Cper, respectively). Prevention measures include
working from home, dining out less, grocery shopping less, and wearing PPE,
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and bottled-water-buying behaviors are drinking bottled water, cooking with
bottled water, and using bottled water for hygiene. Refer to previous work for
more information on prevention measures [14,32].

Step D5. Agents update demand patterns. Agents that choose to work from home, dine
out less, or grocery-shop less update their demand patterns from a typical
diurnal pattern to a pattern that expresses demands uniformly across daylight
hours (standard and COVID-19 demand patterns in Table A7).

The last step of the framework is completed at the end of the 90-day period.

Step S1. Calculate hydraulic performance of the water distribution system. The unique
demand patterns reporting the demands at each node and each hour for the
90-day period are passed to the EPANET simulation using WNTR. Results from
the hydraulic simulation for each hourly time step are recorded, including the
water age and pressure at each node and the flow rate and direction of flow in
each pipe.

Appendix C. State Variables and Parameters
The following is taken from Vizanko et al. [14].

Table A5. Agent parameters are used to model exposure to COVID-19, communication, and mobility
in the network. LN(x, y) represents a log-normal distribution with mean x and standard deviation y.

Parameter Symbol Value

Residential exposure rate eres 0.05 1

Non-residential exposure rate enr 0.01 1

Probability of listening to radio PR Table A8
Probability of watching TV PTV Table A8
Work node Nwork All industrial nodes
Home node Nhome All residential nodes
Exposed stage threshold (days) τexp ∼ LN(4.5, 1.5) 1

Symptomatic stage threshold (days) τsymp
∼ LN(1.1, 0.9) (to severe stage) 1

∼ LN(8.0, 2.0) (to recovered stage) 1

Infected stage threshold (days) τin f tsymp + tsev + tcrit

Severe stage threshold (days) τsev
∼ LN(1.5, 2.0) (to critical stage) 1

∼ LN(18.1, 6.3) (to recovered stage) 1

Critical stage threshold (days) τcrit
∼ LN(10.7, 4.8) (to dead stage) 1

∼ LN(18.1, 6.3) (to recovered stage) 1

Note: 1 values reported by Kerr et al. [5].

Table A6. Agent state variables.

State Variable Symbol Value

COVID-19 status S [susceptible, exposed, infected, recovered, dead]
Symptomatic status Ssymp [Symptomatic, asymptomatic]
Infected status Sin f [mild, severe, critical]
Personal COVID-19 status (BBN input) Cper ∈ [1, 9]
Friends and Family COVID-19 status (BBN input) C f f ∈ [1, 2, 3, 4, 5, 6, 7]
Mass media exposure (BBN input) Cmed ∈ {0, 1}
Time in exposed stage (days) texp
Time in symptomatic stage (days) tsymp
Time in infected stage (days) tin f
Time in severe stage (days) tsev
Time in critical stage (days) tcrit
WFH decision DWFH [Not WFH, WFH]
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Table A6. Cont.

State Variable Symbol Value

Dine out less decision Ddine [Dine out, dine out less]
Grocery shop less decision Dshop [Grocery shop, grocery shop less]
PPE decision DPPE [Wear PPE, not wear PPE]

Appendix D. Supplemental Information
All the below is taken from Vizanko et al. [14].

Appendix D.1. Daily Demand Patterns

Table A7. Residential demand patterns.

Hour Standard Residential Pattern COVID-19 Residential Pattern

0 0.55 0.51
1 0.55 0.41
2 0.58 0.40
3 0.67 0.47
4 0.85 0.67
5 1.05 0.99
6 1.16 1.07
7 1.12 1.05
8 1.15 1.13
9 1.10 1.21

10 1.02 1.26
11 1.00 1.31
12 1.02 1.28
13 1.10 1.22
14 1.20 1.14
15 1.35 1.11
16 1.45 1.15
17 1.50 1.21
18 1.50 1.25
19 1.35 1.32
20 1.00 1.21
21 0.80 1.06
22 0.70 0.88
23 0.60 0.67

Appendix D.2. TV and Radio Probabilities

Table A8. Probabilities of an agent receiving information from radio (PR) and TV (PTV) for each hour
of a given day.

Daily Time Step PR PTV

0 0.463 4.626
1 0.577 0.439
2 0.35 0.226
3 0.35 0.215
4 0.575 0.006
5 8.342 0.366
6 20.76 4.405
7 24.794 17.15
8 4.436 12.898
9 4.597 8.847
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Table A8. Cont.

Daily Time Step PR PTV

10 0.52 0.343
11 4.49 0.22
12 8.515 4.846
13 8.622 0.151
14 8.678 0.421
15 12.711 0.656
16 12.328 0.869
17 8.251 15.769
18 4.165 21.366
19 0.243 17.037
20 0.35 27.649
21 0.342 35.729
22 0.123 31.951
23 0.233 9.203

Appendix D.3. BBN Figures and Tables
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Figure A2. The BBN model is used in agent decision-making to select working from home. The
model includes demographic and perception variables.
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Figure A3. BBN model is used to in agent decision-making to select dining out less. Model includes
demographic, perception, and PMT variables.
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Figure A4. The BBN model is used in agent decision-making to select grocery shopping less. The
model includes demographic, perception, and PMT variables.
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Figure A5. The BBN model is used in agent decision-making to select wearing a mask. The model
includes demographic and perception variables.

Table A9. Variables used as input to the BBN model include demographics, perceptions, and PMT
constructs. Question responses are included in the question column in brackets, and Likert scale.

Variable Question

Trust-Family How much do you trust people in your family? [5]
Trust-Neighbors How much do you trust people in your neighbourhood? [5]
Trust-Coworkers How much do you trust people you work or study with? [5]
Trust-Language How much do you trust people who speak a different language from you? [5]
Trust-Strangers How much do you trust strangers? [5]
Trust-Immigrants How much do you trust immigrants? [5]
Trust-Medical staff How much do you trust medical doctors and nurses? [5]
Trust-Scientists How much do you trust scientists? [5]

Media-Posters Have you come across information about coronavirus or COVID-19 from: official public
posters. [1: yes, 2: no]

Media-Social Have you come across information about coronavirus or COVID-19 from: social media
or online blogs from individuals. [1: yes, 2: no]

Media-Journalist Have you come across information about coronavirus or COVID-19 from: journalists
and commentators in the media (TV, radio, newspapers). [1: yes, 2: no]

Media-Government
Have you come across information about coronavirus or COVID-19 from: government
or official sources such as websites or public speeches/broadcasts within the country
you are living in. [1: yes, 2: no]

Media-Work Have you come across information about coronavirus or COVID-19 from: official
messages from your place of work or education. [1: yes, 2: no]

Media-Friends Have you come across information about coronavirus or COVID-19 from: friends and
family. [1: yes, 2: no]

Media-WHO Have you come across information about coronavirus or COVID-19 from: World Health
Organisation. [1: yes, 2: no]

Current Worry-Climate How worried are you personally about climate change at present? [7]
Current Worry-Immigration How worried are you personally about immigration at present? [7]
Current Worry-Terrorism How worried are you personally about terrorism at present? [7]
Current Worry-Crime How worried are you personally about crime at present? [7]
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Table A9. Cont.

Variable Question

Future Worry-Finances
How likely do you think it is that [you (ps) OR your friends and family in the country
you are currently living in (fs)] will be directly affected by financial problems in the
next 6 months? [7]

Future Worry-Avoidance
How likely do you think it is that [you (ps) OR your friends and family in the country
you are currently living in (fs)] will be directly affected by antisocial behavior by others
in the next 6 months? [7]

Future Worry-Immigration
How likely do you think it is that [you (ps) OR your friends and family in the country
you are currently living in (fs)] will be directly affected by immigration in the next
6 months? [7]

Dem-Sex What is your sex? [1: female, 2: male, 3: other, 4: prefer not to say]
Dem-Age What is your age? [1: 18–24, 2: 25–34, 3: 35–44, 4: 45–54, 5: 55–64, 6: 65+]
Dem-Healthcare Are you a healthcare provider (e.g., doctor, nurse, paramedic, pharmacist, carer)?

Dem-Education Please indicate your highest educational qualification: [1: no formal above 16 to
5: Masters, 9: doctorate]

Prioritize Society To what extent do you think it’s important to do things for the benefit of others and
society even if they have some costs to you personally? [7]

COVID-19 Experience

Have you ever had, or thought you might have, the coronavirus/COVID-19? [9: unsure,
8: no, 3: I think I might have had it but am recovered, 2: I think I might have it now but
not tested, 1: doctor suspected but tested negative, 4: doctor suspected but no test yet,
5: doctor confirmed and am still infected, 6: doctor confirmed but now test negative,
7: doctor confirmed but not been tested again]

Longitude-1 week How worried were you about coronavirus 1 week ago? [7]
Longitude-1 month How worried were you about coronavirus 1 month ago? [7]
Longitude-2 months How worried were you about coronavirus 2 months ago? [7]

Effect-Financial To what extent have you been affected by the coronavirus/COVID-19 in the following
ways?— I have experienced financial difficulties as a result of the pandemic [7]

Effect-Social To what extent have you been affected by the coronavirus/COVID-19 in the following
ways?—I have experienced social difficulties as a result of the pandemic [7]

Effect-Mental health
To what extent have you been affected by the coronavirus/COVID-19 in the follow-
ing ways?—I have experienced mental health difficulties as a result of the pandemic
(e.g., increased anxiety) [7]

Effect-Friends To what extent have you been affected by the coronavirus/COVID-19 in the following
ways?—I have friends and family who have tested positive or died from the virus [7]

SARS
Have you personally been affected by a previous similar epidemic such as SARS (Severe
Acute Respiratory Syndrome), MERS (Middle East Respiratory Syndrome) or Ebola?
[1: yes, 2: no]

General Trust Generally speaking, would you say most people can be trusted, or that you can’t be too
careful in dealing with people? [7]

Information Have you sought out information specifically about coronavirus/COVID-19? [1: yes, 2: no]

Scientist Understanding To what extent do you think scientists have a good understanding of the
coronavirus/COVID-19? [7]

Certainty-Knowledge How certain or uncertain do you think the following are: The current scientific knowl-
edge about the coronavirus/COVID-19? [7]

Certainty-Cases How certain or uncertain do you think the following are: The estimates of the number
of cases of coronavirus/COVID-19 worldwide [7]

Vaccine-Personal If a vaccine were to be available for the coronavirus/COVID-19 now: Would you get
vaccinated yourself? [1: yes, 2: no]

Vaccine-Recommend If a vaccine were to be available for the coronavirus/COVID-19 now: Would you
recommend vulnerable friends and family to get vaccinated? [1: yes, 2: no]

Threat Severity (PMT) How much do you agree or disagree with the following statements?—Getting sick with
the coronavirus/COVID-19 can be serious [5]

Response Efficacy (PMT) To what extent do you feel that the personal actions you are taking to try to limit the
spread of coronavirus make a difference? [7]

Societal Efficacy (PMT) To what extent do you feel the actions that your country is taking to limit the spread of
coronavirus make a difference? [7]
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Table A10. Likert scales used for selected questions.

Variable Likert Scale

Trust 1 = Cannot be trusted at all to 5 = Can be trusted a lot
Current Worry 1 = not at all worried to 7 = very worried
Future Worry 1 = not at all likely to 7 = very likely
Cultural Cognition 1 = strongly disagree to 6 = Strongly agree
Prioritize Society 1 = not at all to 7 = very much so
Longitude 1 = not at all worried to 7 = very worried
Effect 1 = not at all affected to 7 = very much affected
General Trust 1 = Can’t be too careful to 7 = Most people can be trusted
Scientist Understanding 1 = very limited understanding to 7 = very good understanding
Certainty 1 = very certain to 7 = very uncertain
Country-Affect and Personal-Sick 1 = strongly disagree to 5 = strongly agree
Threat Severity 1 = strongly disagree to 5 = strongly agree
Response Efficacy and Societal Efficacy 1 = not at all to 7 = very much

Table A11. Performance of each PM prediction model.

PM Accuracy Recall Precision F1

Work from home 66.5% 47.9% 58.7% 52.8%
PPE 74.4% 60.0% 72.6% 65.7%
Dining out less 95.2% 72.3% 71.2% 82.1%
Shopping for groceries less 69.7% 61.5% 60.9% 64.9%
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