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Abstract The rapid digital transformation of Water Distribution Networks (WDNs) has led to the collection
of multi-sensor time series with high temporal and spatial resolution. However, missing data poses a significant
challenge, undermining the usability and effectiveness of data-driven applications. Performing missing data
imputation is essential to enhance data quality and support intelligent management. This study first reveals that
WDN sensor data in tensor form inherently exhibit spatiotemporal redundancy across three dimensions: inter-
sensor similarity, intra-day regularity, and daily recurrence. The redundancy can be algebraically characterized
by the low-rank structure of WDN tensor data, providing a robust foundation for imputation. Based on these
findings, a novel Low-rank Autoregressive Tensor Completion (LATC) approach is proposed to efficiently
impute spatiotemporal WDN data. The LATC combines autoregressive regularization with standard low-rank
tensor completion, effectively capturing both global redundancy and local correlation of multi-sensor WDN
data. Finally, the LATC is validated on four real-world and simulated WDN data sets under eight different
missing scenarios. Extensive experiments show that the LATC significantly outperforms state-of-the-art
baseline methods, achieving accurate imputation even under severe corruption and complex missing patterns.

Plain Language Summary With the rapid digital transformation of Water Distribution Networks
(WDN:gs), there is increasingly more large-scale data being collected with fine temporal resolution and high
sensor coverage. However, the inevitable missing data issue makes numerous data-driven intelligent
applications suffer from incorrect responses. Therefore, performing reliable imputations on spatiotemporal
WDN data has become an essential step before further applications. The present study aims to fill this
knowledge gap by proposing a theoretical framework and a methodological approach. First, it is revealed that
WDN tensor data exhibit inherent redundancy in all modes, including inter-sensor similarity, intra-day
regularity, and daily recurrence. This spatiotemporal redundancy can be algebraically characterized by low-
rank, enabling the use of low-rank prior-based approaches in imputation tasks. Building on this framework, a
general low-rank autoregressive tensor completion approach is presented for efficient WDN data imputation.
Finally, extensive experiments on real-world WDN data sets prove the effectiveness and superiority of the
proposed approach, particularly in scenarios involving severe structural corruption and complex missing
patterns. This study is the first to comprehensively address issues concerning spatiotemporal data imputation in
real-world WDN’s and is expected to serve as a starting point for further exploration.

1. Introduction

Water Distribution Networks (WDNs) serve as an essential urban infrastructure and are accountable for the
reliable and efficient supply of clean water to residential and industrial users (Zhou et al., 2022). The continuous
expansion of urbanization (Sanchez et al., 2020) and rapid population growth (Sivagurunathan et al., 2022) have
significantly increased water resource consumption and placed higher loads on WDNs, which urge the imple-
mentation of digital transformation (Boyle et al., 2022) to enhance water supply management. WDN digitization
is accelerating due to remarkable advances in cost-effective data acquisition and wireless data transfer tech-
nologies (Eggimann et al., 2017; Oberascher et al., 2022). Therefore, a growing number of multi-sensor obser-
vations (e.g., pressure, flow, water quality) are collected with fine temporal resolution and high spatial sensor
coverage.

These spatiotemporal time series, which reflect the underlying states and dynamics of WDNs, establish the
foundation for a variety of downstream tasks and decision-making processes in Smart Water Networks (SWNs)
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(Eggimann et al., 2017; Fu et al., 2022), such as hydraulic model calibration (Chu et al., 2020; Zhou et al., 2023),
anomaly detection (Z. Hu et al., 2022; Zhou et al., 2019), demand forecasting (Salloom et al., 2021; Zanfei,
Brentan et al., 2022), optimal scheduling (Hajgaté et al., 2020; Salomons & Housh, 2020), to name but a few.
However, in real-world WDNS, the problem of missing values is virtually ubiquitous and inevitable (Osman
et al., 2018) for various reasons, including sensor malfunction, transmission failure, insufficient sampling, and
human damage. This problem undermines the usability and effectiveness of data-driven applications that rely on
complete data entries or time series (Zanfei, Menapace et al., 2022). For example, the presence of missing values
or outliers greatly diminishes the accuracy and robustness of real-time hydraulic models, resulting in calibrated
parameters that fail to reflect the actual state of the WDNs (Chu et al., 2021). Furthermore, in short-term water
demand forecasting, the reliability of predicted results is highly sensitive to data quality, particularly when
forecasting for numerous sensors simultaneously (Wu et al., 2023). Incomplete data inputs can hinder the model's
ability to extract input features, causing substantial output errors. Thus, accurately estimating and filling in
missing values—i.e., imputation—on spatiotemporal WDN data sets is vital for the success of SWNs. However,
this task remains challenging due to complex missing mechanisms and varying degrees of missingness.

There are several approaches to dealing with missing values in the WDN domain, ranging from simple deletion
techniques to complex imputation algorithms. Osman et al. (2018) developed a “top-down bottom-up” two-
pronged method to select the appropriate imputation model based on the category and percentage of missing
data. Indeed, such stepwise decisions and manual model selection introduce considerable inefficiency and often
result in unstable performance when applied to large-scale WDN data sets. To obtain a robust calibration of the
nodal water demand in WDN, Chu et al. (2021) offset the absence of data and outliers by the predicted value from
historical measurements in real-time. However, as noted by the authors, the relatively simple nature of the
prediction algorithm limits its validity in handling continuous missing time events. Moreover, Zanfei, Menapace
et al. (2022) analyzed diverse conventional imputation methods, including statistical and machine learning al-
gorithms, to tackle missing water demand data. It was found that catching intra-day seasonality is crucial for
estimating incomplete time series with large gaps. Nevertheless, these methods did not achieve acceptable results
because of the high variability in real-world WDN time series.

Overall, with the development of WDN digitization, missing value imputation has become an essential step for
fully leveraging the data, attracting great interest in recent years. However, the study on the imputation approach
is still in its infancy. These remaining open issues can be summarized in three key points. First, existing works
have not yet investigated the complicated missing patterns in real-world WDN data. Beyond the well-known
Random Missing (RM), the spatiotemporal data suffer from considerable structural corruption, especially the
condition of a sensor losing observations for one day and all sensors losing observations over several consecutive
time points, which is fatal to the regular operation of SWNs. Second, existing works almost impute missing values
for individual sensors or in a specific application, requiring repeated model matching and parameter tuning due to
limited generalizability across diverse sensors and missing patterns. When applied to large-scale WDN data
containing hundreds of sensors, this process becomes both computationally expensive and operationally
burdensome. The desired imputation model for SWNs will impute missing values quickly and precisely, thereby
supporting all applications following real-time data acquisition without requiring custom imputation in each
application. Third, existing works have overlooked the abundant correlations and dependencies across the
temporal and spatial dimensions that can be exploited to better estimate missing values. For instance, sensor time
series typically show strong global patterns associated with intrinsic daily recurrence, and observations collected
from neighboring sensors over short periods exhibit similar trends.

This study aims to comprehensively address these issues concerning spatiotemporal WDN data imputation.
Specifically, three principal missing patterns are summarized to characterize the features of observation loss
caused by different mechanisms. An in-depth analysis of WDN data characteristics reveals the inherent global
redundancy (or algebraical low-rankness) and local correlation of multi-sensor time series organized as a third-
order tensor (sensors X intervals X days). This spatiotemporal redundancy manifests itself in all tensor modes,
including inter-sensor similarity, intra-day regularity, and daily recurrence. It provides a theoretical ground for
missing value imputation in real-world WDNs through Low-Rank Tensor Completion (LRTC). Based on these
properties, a general approach named Low-rank Autoregressive Tensor Completion (LATC) is developed for
accurate and effective imputation under diverse missing scenarios. By combining the autoregressive processes
with the truncated tensor Nuclear Norm (NN)-based model, LATC can better capture the global low-rank
structure and local temporal continuity underlying spatiotemporal WDN data. Extensive experiments on real-
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world data sets demonstrate the effectiveness and superiority of LATC for large-scale WDN data imputation,
outperforming several state-of-the-art baseline models, especially in scenarios with severe structural corruption
and complicated missing patterns. Additionally, the results of parameter analysis and ablation study confirm the
importance of truncation operation in characterizing spatiotemporal redundancy and of autoregressive regula-
rization in ensuring temporal continuity.

The remainder of this study is structured as follows. Section 2 describes the theoretical and methodological
framework for spatiotemporal WDN data imputation. Sections 3 and 4 present the experimental setup and cor-
responding results, respectively. Section 5 explains the mechanisms of LATC's two key components in modeling
WDN data and explores its other potential applications in SWNSs. Finally, Section 6 concludes the study and
suggests directions for future research.

2. Methodology
2.1. Notations

To facilitate the following study, some mathematical notations outlined by Kolda and Bader (2009) are first
introduced. Matrices are indicated with bold uppercase letters (e.g., X € RM*¥), vectors with bold lowercase

letters (e.g.,x € RM), and scalars with lowercase letters (e.g., x). Given amatrix X € RM*N its (m,n) th element
is denoted by x,, , and its Frobenius norm is defined as || X]||; = 4 /Zmﬂx,zn,n. The singular value decomposition is
defined as X = U, VT, where > (X) is a vector containing the singular values of X in descending order and
0;(X) represents ith largest singular value.

]RMXIXJ

When expanding to a third-order tensor & € , its (m,i,j) th element is denoted by x,,;;, and the inner

product with another tensor of identical size is calculated by (X, Y) = Zm’i %m.i.j Ym,ij- The Frobenius norm on a
tensor is defined as ||X||; = , /Zm’inf”’iJ. The kth-mode (k = 1,2,3) unfolding of & is denoted by &) (i.e.,

Xy € RMUD 2, € RI*MD x5 € R7*MD) Here, IJ =1 x J, MJ =M X J, and M = M X I are
introduced for notational simplicity. Correspondingly, the folding operator fold;(-) converts the kth-mode
unfolding matrix to the origin tensor; in this way, the folding operator satisfies foldk(z\’(k)) = & For ease of
understanding, the 1-mode, 2-mode, and 3-mode unfolding are referred to as the “sensors” mode, “intervals”
mode, and “days” mode unfolding, respectively, in the following.

2.2. Problem Statement

In a real-world WDN, the spatiotemporal time series data set collected from M sensors over 1J consecutive time
points is organized as a matrix D:

diy - diy
D=|: - i |eR¥UW, M

dM,l dM,IJ

where the rows correspond to individual sensors and the columns represent time points. In particular, / denotes the
time points per day, and J denotes the total number of days. Since D frequently has substantial structural cor-
ruption and missing values, the partially observed matrix is denoted as Pq(D). Generally, outliers can also be
treated as missing data and subsequently imputed. The operator P : RM X)) s RMXU) represents a projection
that retains the elements in the observation index set Q and sets all others to zero:

Ay, if (m,n) €Q,
[Po(D)],,, = , )
0, otherwise,

where [Pq(D)],,, indicates its (m,n) th elements with m = 1,...,M andn = 1,....1J.
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Figure 1. Illustration of unfolding Water Distribution Network tensor data.

The main idea of spatiotemporal WDN data imputation is to extract higher-order correlations and dependencies
from the partial observations, which can be further leveraged to estimate the missing entries. Given the noticeable
day-to-day patterns and similarity in WDN time series, the observation matrix D (sensors X time points) is
transformed into a third-order tensor D (sensors X intervals X days) by introducing an additional “day”
dimension. As depicted in Figure 1, the tensorization step enables the comprehensive capture of global infor-
mation across all three modes, including the observation matrix (i.e., the “sensors”” mode unfolding).

2.3. Complicated Missing Patterns

An in-depth investigation of the missing patterns and mechanisms in spatiotemporal WDN data is necessary for
developing a practical imputation approach. Rubin (1975) introduced a classification system, still widely used
today, that categorizes missing values according to the relationships between measured variables and the like-
lihood of missingness: missing completely at random, missing at random, and missing not at random. This system
has been applied on several WDN data imputation studies (Osman et al., 2018; Zanfei, Menapace et al., 2022),
requiring strict assumptions, and focusing more on the nature of the missing data rather than on imputation
efficiency.

To this end, the missing patterns of spatiotemporal WDN data are classified into three categories according to the
features of observation loss caused by different mechanisms in real-world data sets, as illustrated in Figure 2. The
first category is RM. Power supply fluctuations and packet loss may give rise to cases of random data loss, where
individual data points are missing unpredictably during the acquisition and transmission process. The second
category is Long-range Missing (LM). In the context of sensor operation, malfunctions and routine maintenance
can introduce non-random data gaps that compromise the observation integrity over extended periods. Block
Missing (BM) is the third category, which presents a steep challenge due to the unavailability of all sensor data
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Figure 2. Visualization of three missing patterns in spatiotemporal Water Distribution Network data, presented in matrix and tensor form.

within a specific time window. Such scenarios emerge when software or hardware failures affect the shared
SCADA system.

Notably, this is the first time that LM and BM have been clearly defined in WDN data analysis, reflecting
structural corruption along the temporal and spatial dimensions. Adequate attention should be directed toward
these patterns, as their uncertainty and risk potentially disrupt many data-driven applications. Therefore, a general
imputation approach for SWNs must be capable of handling missing data with complicated patterns.

2.4. Spatiotemporal Data Redundancy
2.4.1. Data Redundancy Analysis

The tensorization step is a powerful tool that allows each unfolding mode to be analyzed separately, potentially
revealing similarities or redundancies that may not be immediately perceived in matrix form. To demonstrate the
inherent multi-mode data redundancies in spatiotemporal WDN data, visualizations using the real-world “Z-city
flow” data set (see Section 3.1 for details) are presented in Figure 3.

Inter-sensor similarity: Figure 3a displays the time series curves of five flow sensors over a one-day period.
Despite being positioned at different locations in WDN, all sensors exhibit similar patterns of variation in their
readings due to the interconnected topology of the pipe network. This sensor similarity highlights the spatial
redundancy in the multi-sensor observation data.

Intra-day regularity: Focusing on sensor #5 from Figures 3a and 3c illustrates its observations at six consecutive
time points over a 1-month period. The curves show a consistent decline from 22:15 to 23:30 each day, aligning
with typical residential water consumption patterns. This intra-day regularity indicates data redundancy between
adjacent sampling intervals.

Daily recurrence: Focusing again on sensor #5, Figure 3e presents data collected over a 1-week period, with daily
observations plotted as individual curves. These curves exhibit recurrent patterns throughout the week, charac-
terized by an “M” shape with dual peaks during the morning and evening rush hours. This daily recurrence
demonstrates the redundancy in the sensor's readings on different days.

2.4.2. Data Redundancy Representation

In this study, these multi-mode data redundancies are collectively referred to as global redundancy, which
characterizes the intrinsic structure of spatiotemporal WDN data. Global redundancy indicates that information is
redundant and can be compressed across all tensor modes, a property that is algebraically represented as “low
rankness” (Zhang et al., 2024). As depicted in Figures 3b, 3d, and 3f, the singular value decomposition is per-
formed on the three tensor mode unfoldings (i.e., D(;), D) and D3y in Figure 1). The singular values of each
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Figure 3. Illustration of multi-mode data redundancies and low-rank properties of spatiotemporal Water Distribution Network data.

unfolding matrix are dominated by only a handful of large ones, indicating that fewer fundamental patterns can
describe most information. By imposing low-rank prior constraints, reliable estimates for missing values are
obtained by exploiting global information from observations and latent correlations of other modes. For example,
BM data is no longer regarded as structural corruption in the “days” mode and can now be effectively imputed
using daily recurrence.

2.5. Spatiotemporal Data Imputation

In the following subsections, a low-rank prior based on Truncated Nuclear Norm (TNN) minimization is first
applied to capture the global redundancy in WDN tensor data. Given the intrinsic temporal continuity in sensor
time series, a novel autoregressive regularization is subsequently introduced into the tensor completion model.
This combination enables the imputation of missing values with high efficiency and accuracy, fully harnessing the
potential of spatiotemporal WDN data.

2.5.1. Truncation Operation for Global Redundancy

As described previously, spatiotemporal WDN data is characterized by global redundancy or algebraically ex-
hibits low-rank properties. For this reason, LRTC models (Yuan & Zhang, 2016) have great potential for WDN
data imputation. There is growing evidence that tensor representation outperforms matrix representation in
various research areas, such as the recovery of image, video, and traffic data (Asif et al., 2016; Liu et al., 2013; Lu
et al., 2020). The tensorization step converts the missing value estimation task in SWNs into a standard tensor
completion problem as follows:

n}\i}n rank(&)
X =9Q(Y), 3

S.t.
Po(Y) = Po(D),
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where ¥ € RM*() s introduced to retain the observation information as an auxiliary variable, X € RM*7*/ js
the low-rank tensor to be reconstructed based on partial observations. The forward tensorization operator Q(-) is
utilized to split the temporal dimension into (intervals, days)-indexed combinations, that is,
X = Q(Y) € RM*IXJ Conversely, an inverse operator Q' (-) is defined to unfold the resulting tensor back into

the original matrix by ¥ = Q~'(X) € RM* ),

In the optimization problem (3), minimizing the tensor rank can describe global redundancy across different
dimensions. However, a central issue in LRTC is the appropriate definition of the tensor rank (Wang et al., 2021)
since its direct calculation is NP-hard (Hastad, 1990). Over the past decade, numerous studies have sought
alternative approximations of the rank function to overcome this difficulty. The NN ||&||,, which is the tightest
convex surrogate for the tensor rank, has been widely used in LRTC (Lu et al., 2019) due to its effectiveness in
preserving the inherent structure of tensors. In recent years, more studies have suggested that the nonconvex
approximation of the rank function, namely the TNN |[|&¥[], ., produces superior estimation accuracy than the NN
[|&||, (Huang et al., 2014; Nie et al., 2022; Xue et al., 2018). Formal definitions of the NN and TNN for matrices
and tensors are outlined below.

Definition 1 (Nuclear Norm & Truncated Nuclear Norm for Matrices). The NN of a given matrix X € RM*V ig
defined as the summation of its singular values:

min{m,n}

Xl = > 6/X) )

i=1

Considering a positive integer r < min{m,n}, its TNN is defined as the summation of min{m,n} — r minimum
singular values:

min{m,n}

Xl = D) o). ©)

i=r+l1

Definition 2 (Nuclear Norm & Truncated Nuclear Norm for Tensors). In alignment with the work of Liu
et al. (2013), the NN/TNN for any tensor X € R¥*/*/ is defined as the weighted sum of NN/TNN for all the
unfolding matrices along each mode, expressed as Equations 6 and 7 respectively:

X, =D o] X | .- 6)

3
k=1

3
120, = X || X ... @)

k=1

3
where a; denotes the non-negative weight parameter on the corresponding unfolding matrix X, with Y o = 1,

i=1

r € N, serves as the truncation threshold and satisfies r < min{M, I, J}.

In contrast to the LRTC with NN (LRTC-NN) approach, which minimizes all singular values simultaneously, the
LRTC with TNN (LRTC-TNN) approach focuses on the minimization of the smaller singular values. This
strategy more precisely reflects the actual rank structure and preserves the principal components. By minimizing
TNN as the objective function, the optimization problem (3) is reformulated into a LRTC-TNN model:

min [|&]],
e ,
& =9(Y), ®)

S.t.
Po(Y) = Po(D).
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2.5.2. Autoregressive Regularization for Local Correlation

A major limitation of LRTC-based models is their inability to capture local temporal patterns in non-stationary
WDN time series despite characterizing global redundancy. In practice, the observed flow and pressure values
frequently exhibit temporary fluctuations due to special events or random noise, which deviate more or less from
the global trend. Figure 3c clearly shows the local correlation and smoothness between temporally adjacent
observations, especially when water demand has an apparent increase (e.g., August 20) or decrease (e.g., August
7). Therefore, it is essential to explicitly impose temporal continuity on the model to ensure that the imputation
results remain accurate and relevant over time.

Recent advances have proposed feasible solutions by introducing regularization schemes that incorporate such
temporal continuity to improve imputation performance while avoiding overfitting (Chen & Sun, 2021; Takeuchi
et al., 2017). To better encode strong local correlation, autoregressive processes are incorporated as a novel
regularization term that accounts for temporal variation of the variable matrix Y:

2
¥l = 2% (e = 2 emimen,) ©)

mt

where C € RM*4

is a learnable coefficient parameters matrix and H = {hy,--,h,} is a time lag set. ||Y||¢
quantifies the accumulated sum of autoregressive errors incurred in fitting each time series y,, using coefficient

vector c,,. Upon estimating C, minimizing temporal variation fosters enhanced temporal continuity of Y.

2.5.3. Data Imputation Approach

Based on the above theoretical foundations, the LATC approach (X. Chen et al., 2022) is employed for spatio-
temporal WDN data imputation. To model both global redundancy and local correlation, LATC integrates TNN
minimization of the completed tensor with temporal variation minimization of the unfolding time series matrix:

. A
min 1], +511¥lle

X =0Q(Y), (10)
st
Po(Y) = Po(D),

where 4 is the positive weight parameter that regulates the trade-off between TNN and temporal variation.

The straightforward and default technique for solving LRTC-based models is the Alternating Direction Method of
Multipliers (ADMM) algorithm, which decomposes large optimization problems into smaller tractable sub-
problems and facilitates ease of parallelization. However, the new optimization problem Equation 10 remains
unsolvable due to the introduced autoregressive coefficient matrix C, rendering the ADMM algorithm incapable
of ensuring convergence (C. Chen et al., 2016). An alternating minimization technique is implemented to
decompose Equation 10 into two subproblems. Let (&°,Y°,C°) denote the given initial values and € be the
iteration count. The variables {(&*,¥*,C")},_ are updated by iteratively solving Equation 11 and Equation 19.

Specifically, C* is fixed, and the following optimization problem is solved to update A1 and Y&

A
0+ 1 t+1 :
21y = arg i |, + 31l

X =Q(Y), (an
S.t.
Po(Y) = Po(D).

With C* fixed, the subproblem Equation 11 naturally transforms into a standard LRTC-TNN problem, which the
ADMM can solve similarly to Hu et al. (2013) and Liu et al. (2013). Following the ADMM, the augmented
Lagrangian function of Equation 11 is formulated as
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A P
L(R.Y.CT) = 1, + S 1¥ e + 5118 = QNI + (X = Q). T), (12)
where p> 0 is a penalty parameter and 7 € RM*/*/ is the dual variable. Subsequently, one of the variables is
iteratively updated while keeping the other two fixed:
X€+1,v+l =arg mAi)n [:((Y, Y€+1,V,C€’T€+l,\/‘)’ (13)
Y€+l,v+1 = arg m}n £(X€+l,v+l, Y, Ce,T€+1’V), (14)
T€+l,v+1 = T€+l,v + p(X€+1,v+1 _ Q(Y€+1,v+1)) (15)
where v is the number of iterations in the ADMM. The detailed solutions of Equations 13 and 14 are discussed and
demonstrated below. It is noteworthy that observation consistency is preserved by enforcing the fixed
constraint P (Y = Po(D).
1. Update Variable &
The optimization problem concerning & involves TNN minimization. According to Equation (7), each &
must be solved independently, and its closed-form solution is determined by
X, = : X 4 Q—l X) — Y€+l,u 2 Q—l X)) — Y€+1,u Q—l T€+1,l/
wr=arg min o | X [, +35 Q7' @) I +(Q7'(®) QT
. 14 1. e+1, 2
= arg min oy || Xy |, + 5“*’(@ - (Q(Y“ Doy = Tw y//’) H v (16)
e+1,
= fold, (Qr,aw<Q(Y€+l'”)(k) ~Tw V//’»’
where G(-) denotes the generalized Singular Value Thresholding (SVT) related to TNN minimization. The
detailed solution process of Equation 16 is given in Text S1 in Supporting Information S1. Subsequently, the
updated value of & can be obtained by
3
X€+l,b+1 = Zaka (]7)
k=1
2. Update Variable Y
In terms of Y**!'**! Equation 14 is formulated as
LA p 2
Lo+l e+ 1,041 +1,
Yotz arg min ¥l +5 &+ — o) — (). T')
k (18)
. P - e+, 2
= arg min §||Y||C«,H + 5” Y-0 I(X“l’”“ + 7! “/p) ||F .
3. Update Variable C
According to the result of Y1 the update of C** ! is obtained by solving a least squares problem as follows:
C€+1 = arg l'nci‘n || Y€+1,Y ”C}[7 (19)
where Y is the maximum iteration in the ADMM.
XU ET AL. 9 of 23
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The derivation process for solving Equations 18 and 19 is beyond the scope of this paper. Closed-form solutions
are provided in Text S2 and Text S3 in Supporting Information S1, respectively.
The implementation of the LATC Imputer for estimating missing values in spatiotemporal WDN data is sum-
marized in Algorithm 1. Three parameters play crucial roles in the algorithm: weight parameter A (balancing TNN
and temporal variation), learning rate parameter p (controlling the ADMM and the SVT) and integer-wise
truncation parameter r for TNN. For parameters a;,a,,as, the same weights are assigned to the three tensor
unfolding matrices, rather than tuning these parameters for each data set and missing scenario, as this process
would be computationally expensive. The time lag set H and convergence threshold e are case-specific. For
convenience, a new parameter c is introduced, defined by ¢ = 1/p. Consequently, ¢ = 1 indicates the equal
significance of both norms in the objective function.
Algorithm 1. LATC Imputer
Input: incomplete matrix D, index set Q, and parameters ¢, r, p, H, €
Output: recovered matrix D
Initialize C° as random small values and 7°° as zeros. Configure Py (Y*°) = Pq (D),
A=c-pyay=a,=a3=1/3,£=0,and Y = 3.
while not converged do
forv=1toY do
p = min{1.05 X p, prmax};
for k = 1 to 3 do
L Compute X' ,iﬂ'”l by Equation (16);
Update X**1V+1 by Equation (17);
Update Y+1V+1 by Equation (18);
Update T7¢+1¥*1 by Equation (15);
Ensure observation consistency by enforcing
Pﬂ(y[+1,v+1) — :PQ(D),
| Update C*** by Equation (19);
Compute X¢+1 = @=1(x+1Y);
Compute e+ = ||X%*1 — )A(")”F/HPQ(D)HF;
if e/*1 < ¢ then
Set dppp = Znn, V(1) € Q;
Converge.
| t=t41;
In SWNs, data-driven downstream applications have fundamental requirements for imputation. First, model
training, calibration, or updating relies on extensive, high-quality historical data sets. Second, complete and real-
time input data guarantees the model's proper operation. Considering the above, two methods for parameter
optimization and real-time data imputation are proposed in Text S4 in Supporting Information S1, which are
necessary for the practical application of LATC. Therefore, the LATC framework is anticipated to serve as a
general approach to consistently achieve robust and reliable estimation results for multiple imputation-related
tasks.
3. Experiment
3.1. Data Set Descriptions
To investigate the imputation applicability of LATC for spatiotemporal WDN data, two real-world, large-scale
data sets provided by the water utility of Z city—a typical city in northern China—are selected. Figure 4
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Figure 4. Schematic of Z-city pipe network topology. This graph labels the locations of the flow and pressure sensors shown
in Figures 3 and 10, respectively.
presents the schematic of Z-city pipe network topology. As key hydraulic parameters of SWNs, flow and pressure
data must be collected and uploaded in real-time during WDN operation. Two simulated data sets are also
generated using a public network (see Figure S1 in Supporting Information S1 for details) to contrast with the
real-world data. A summary of the four data sets is presented in Table 1. For clarity, “Z-city Flow” and “Z-city
Pres” denote the real-world flow and pressure data sets collected from Z-city's WDN, whereas “Sim-net Flow”
and “Sim-net Pres” represent the simulated flow and pressure data sets generated based on the public network.
These abbreviations are used consistently throughout the paper. In particular, these data set sizes differ in the
temporal and spatial dimensions, permitting a comprehensive analysis.
3.2. Missing Data Scenarios
To test the imputation effectiveness of LATC for spatiotemporal WDN data, several missing scenarios are created
based on three missing patterns: RM, LM, and BM, as explained in Section 2.3. The first is multiple scenarios
consisting of individual missing pattern data at different rates, including 30% RM, 60% RM, 30% LM, 30% BM,
Table 1
Description of Four Spatiotemporal Water Distribution Network Data Sets
Data set Description Composition of sensors Data size
Z-city Flow This data set provides instantaneous flow rate/water 3 sensors monitoring water plants outflows; 5 sensors Tensor:
(m’/h) demand values collected from 63 sensors over 1 year monitoring scheduling valves flows; 24 sensors 63 X 96 X 366;
(from 8 September 2023 to 7 September 2024) at 15- monitoring pipeline flows; 31 sensors monitoring Matrix:
min intervals. It contains 3.41% missing values. end-user consumption flows. 63 x 35,136
Z-city Pres (m) This data set records pressure values collected from 52 5 sensors monitoring water plants outlet pressure; 8 Tensor:
sensors over 6 months (from 1 March 2024 to 31 sensors monitoring Pressure before or after the valve; 52 X 96 x 184;
August 2024) at 15-min intervals. It contains 2.87% 25 sensors monitoring pipeline pressures; 14 sensors Matrix:
missing values. monitoring end-user pressures. 52 X 17,664
Sim-net Flow This data set contains instantaneous flow rate/water 3 sensors monitoring water plants outflows; 5 sensors Tensor:
(m*/h) demand values from 120 sensor junctions over monitoring scheduling valves flows; 30 sensors 120 X 96 % 61;
2 months at 15-min intervals. Gaussian noise with a monitoring pipeline flows; 82 sensors monitoring Matrix:
standard deviation of 3% is added to the simulated end-user consumption flows. 120 x 5,856
values of each sensor.
Sim-net Pres (m) This data set contains pressure values from 52 sensor 3 sensors monitoring water plants outlet pressure; 8 Tensor:
junctions over 2 months at 15-min intervals. sensors monitoring Pressure before or after the valve; 52 X 96 X 61;
Gaussian noise with a standard deviation of 0.5 m is 28 sensors monitoring pipeline pressures; 13 sensors Matrix:
added to the simulated values of each sensor. monitoring end-user pressures. 52 % 5,856
XU ET AL. 11 of 23
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and 60% BM. Specifically, the LM gap (indicating the length of consecutive missing in a time series) set is
defined as {96,48,24} and the BM window (indicating the length of entire missing for all sensors) set as {2,4, 6}.
Recognizing that real-world WDN data sets exhibit a combination of missing patterns, the following Mixed
Missing (MM) scenarios are also considered:

e 30% MM consisting of 10% RM, 10% LM, and 10% BM;
e 50% MM consisting of 20% RM, 15% LM, and 15% BM;
e 70% MM consisting of 30% RM, 20% LM, and 20% BM.

Note that the same missing ratio is assigned to each element in the LM gap set for all missing scenarios containing
LM, and the same applies to the BM window set.

In this study, a certain percentage of observations is manually masked at specific locations to simulate the missing
cases. The masked data set shares a function similar to the test data set in machine learning. By comparing the
imputed values with the masked ones, the optimal parameters ¢ and  that perform best under a chosen evaluation

metric can be identified.

Symmetric Mean Absolute Percentage Error (SMAPE) and Root Mean Square Error (RMSE) are adopted as
evaluation metrics:

100% <& |d; — dj
SMAPE = .
n ;('di|+|di|)/2

1& A 2
RMSE = /;;(di—di), @n

where d; and a?l- are masked observations values and imputed values, respectively. Lower values of SMAPE and

(20)

RMSE imply that the imputation model produces results closer to the actual values. Conversely, higher values
suggest poorer imputation performance. Given that many flow values are near-zero or relatively small, the
relative error can be substantial when measured using MAPE. In contrast, SMAPE offers a more balanced error
measure for dealing with flow data sets.

3.3. Baseline Models and Parameter Settings

The imputation performance of LATC on spatiotemporal WDN data sets is primarily influenced by two key
parameters: the trade-off coefficient ¢ (defined by 1/p) and the rank truncation r. The parameter search spaces are
uniformly set to a wide range as ¢ € {1/10,1/5,1,5,10} and r € {5,10,15,20,25,30} for all experiments.
Furthermore, a preliminary test is conducted to determine the appropriate values of other parameters. Specifically,
p is selected from {1 x 10741 x 10_5} and H is preset as {1,2,3,4,5,6} for all data sets.

To our knowledge, no research has explored the usability of low-rank prior-based models on large WDN data sets.
Therefore, three well-known and proven approaches in other domains are selected to evaluate the improvement of
LATC, namely HaLRTC, TRMF, and LAMC-TNN. Two popular machine learning approaches are also used as a
contrast: KNN and Missforest. All experimental code and detailed configurations are publicly available at GitHub
(Xu, 2025a). A summary of the five baseline models is as follows.

e HalRTC: High-accuracy LRTC (Liu et al., 2013), which minimizes the NN of tensor via ADMM, has been
widely used as a benchmark LRTC in numerous imputation studies.

e TRMF: Temporal Regularized Matrix Factorization (H.-F. Yu et al., 2016) introduces an autoregressive
regularization temporal regularizer into the default matrix factorization model. The matrix rank is searched
from {5, 10,20, 30,40} for all data sets.

e LAMC: Low-rank Autoregressive Matrix Completion with TNN, which also incorporates an autoregressive
regularization term into the default matrix completion model (Y. Hu et al., 2013), can be viewed as a matrix
variant of LATC. It shares the same parameter search space as LATC.

XU ET AL.
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Table 2
Imputation Performance Comparison (in Symmetric Mean Absolute Percentage Error/Root Mean Square Error) on Z-City
Flow and Sim-Net Flow Data Set

Data set Scenario LATC HaLRTC TRMF LAMC KNN Missforest

Z-city Flow 30% RM  10.92/60.69  13.89/100.5  13.71/86.20  15.54/108.2  18.93/187.0  12.77/101.4
60% RM  11.93/73.55  15.65/124.0  14.59/97.26  19.53/183.9  24.93/340.2  15.96/164.9
30% LM 14.68/117.7  16.46/142.3  18.99/143.1 16.65/131.1  21.75/240.6  13.91/126.5
30% BM  13.24/93.81 16.01/132.2  39.61/447.1 18.49/176.5  41.93/470.3  41.54/483.5
60% BM  14.67/120.2  18.62/163.9  75.02/765.3  26.11/297.5  42.57/472.0  42.66/494.0
30% MM 13.10/87.87  15.42/118.8  21.66/213.7  16.60/107.7  28.67/325.7  25.70/340.1
50% MM 13.34/95.48  16.00/132.1  25.03/286.0 ~ 17.59/120.7  30.75/364.7  26.29/350.8
70% MM 14.70/115.9  18.14/159.3  37.90/451.7  19.34/158.5  34.39/410.5  30.51/377.1

Sim-net Flow  30% RM  2.855/6.03 3.202/5.94 3.832/6.09 3.261/6.18 2.394/6.01 2.437/6.20
60% RM  2.902/5.91 3.552/6.12 4.253/6.21 3.574/6.29 2.826/6.55 2.760/6.84
30% LM 2.896/6.24 3.625/6.54 3.945/6.40 3.306/6.46 2.399/6.32 2.446/6.49
30% BM  2.925/5.82 4.163/6.56 11.63/26.20  12.01/25.52  44.91/110.6  43.94/115.1
60% BM  3.166/5.83 5.957/8.86 51.28/136.6  26.41/74.19  43.04/108.5  42.40/112.6
30% MM 2.960/5.90 3.810/6.33 5.348/9.22 6.686/15.02  21.00/72.49  20.05/78.63
50% MM 2.893/5.79 3.742/6.23 5.619/10.52  10.77/32.53  18.83/67.74  17.70/72.14
70% MM 2.964/5.99 4.209/6.90 14.46/42.16  8.308/21.44  24.52/78.44  24.64/84.77

Note. Values highlighted in boldface represent the best performance within each respective row.

e KNN: K-Nearest Neighbor (Beretta & Santaniello, 2016) is a classical imputation algorithm that estimates
missing values by identifying the k nearest neighbors to the missing data point and calculating their average.
The parameter k is searched from {5, 10, 15,20, 30} for all data sets.

o Missforest: Missforest (Stekhoven & Biihlmann, 2012) is a non-parametric approach that utilizes the random
forests algorithm to predict and replace missing values iteratively.

4. Results
4.1. Imputation Performance

Tables 2 and 3 summarize the imputation performance of LATC and baseline models on four spatiotemporal
WDN data sets. The results demonstrate that the LATC model consistently outperforms the baseline models under
both BM and MM scenarios, with a particularly significant advantage. For RM and LM imputations, the per-
formance of each model varied across data sets; however, LATC generally achieves the best or near-best results
on all data sets. On the two real-world data sets (Z-city Flow and Z-city Pres), the rate and pattern of missing data
are observed to considerably influence all models. In particular, as the missing rate increases, the SMAPE/RMSE
values rise accordingly, and structural missing patterns (e.g., LM and BM) pose more complex challenges than the
simpler RM pattern.

To illustrate the imputation performance of various models clearly, visualization examples are provided under a
representative and complex missing scenario (i.e., 50% MM) on Z-city Flow data set and Z-city Pres data set, as
shown in Figures 5 and 6. One can easily find that even in severe, structural, and MM scenarios, the true long-term
trends and detailed information are successfully reconstructed by the LATC model based on the captured global
low-rank structure and local temporal continuity of spatiotemporal WDN data.

Compared to HaLRTC, LATC shows greater robustness to the increasing missing rate, and as displayed in
Figures 5a and 5b, its estimation for missing values is in better agreement with the actual values. The superiority
of LATC over the two matrix-based models, TRMF and LAMC, indicates that tensor structure is more capable of
characterizing abundant and underlying multi-mode correlations. Although TRMF gives acceptable results in RM
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Table 3

Imputation Performance Comparison (in Symmetric Mean Absolute Percentage Error/Root Mean Square Error) on Z-City

Pres and Sim-Net Pres Data Sets

Data set Scenario LATC HaLRTC TRMF LAMC KNN Missforest
Z-city Pres 30% RM 1.969/0.852  2.262/0.954  1.684/0.765  2.047/0.920  2.094/0.926 1.781/0.844
60% RM 2.197/0.944  2.696/1.125  1.892/0.843  2.465/1.129  3.125/1.394  2.228/1.063
30% LM 2.247/0.961  2.604/1.089  2.073/0.927  2.150/0.973  2.195/0.968  1.864/0.882
30% BM  2.885/1.251  3.180/1.339  5.897/2.485  3.271/1.445  5.375/2.270  10.42/4.017
60% BM  3.148/1.345  3.660/1.509  11.94/4.591  4.234/1.859  5.450/2.300  5.919/2.474
30% MM 2.358/1.044  2.654/1.132  3.276/1.505  2.518/1.156  3.605/1.698  3.575/1.794
50% MM 2.477/1.083  2.809/1.184  3.518/1.705  2.643/1.200  3.552/1.658  3.495/1.723
70% MM 2.739/1.185  3.250/1.348  5.830/2.741 3.081/1.372  4.168/1.875  3.993/1.900
Sim-net Pres 30% RM 1.322/0.472  1.393/0.503 1.375/0.492  1.393/0.498  1.321/0.470  1.374/0.491
60% RM 1.322/0.471 1.468/0.535 1.453/0.523 1.582/0.591 1.600/0.613 1.560/0.563
30% LM 1.310/0.470 1.445/0.530  1.368/0.492  1.390/0.499  1.306/0.468  1.364/0.490
30% BM 1.300/0.467 1.645/0.628  2.849/1.157  3.875/1.890  14.29/5.884  13.86/6.109
60% BM 1.325/0.467  2.114/0.841 14.64/6.176  7.393/3.800  14.81/5.840  13.72/5.942
30% MM 1.326/0.471 1.493/0.546  1.575/0.589  2.156/0.955  7.473/4.052  7.060/4.162
50% MM 1.322/0.469 1.538/0.565  2.128/0.884  2.251/1.023  7.433/3.995  6.968/4.062
70% MM 1.315/0.469  1.712/0.665  4.544/2.373  2.653/1.265  8.650/4.478  8.273/4.643

Note. Values highlighted in boldface represent the best performance within each respective row.

and LM scenarios for specific data sets, as seen from the gray rectangles in Figures Sc and 6c, its dependence on
the autoregressive process alone leads to unreasonable estimation for BM data. In addition to low-rank matrix-

based models, two machine learning approaches, KNN and Missforest, fail for BM imputation tasks due to a
lack of available neighbor entries or sufficient reference information for accurate prediction. Furthermore, their

sensitivity to outliers and reliance on black-box algorithms (Rudin, 2019) further limit the reliability of missing

WDN data imputation.
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Figure 5. Visualizations of imputation performance comparison between Low-rank Autoregressive Tensor Completion and baseline models under 50% Mixed Missing
missing scenario on Z-city Flow data set. In these visualizations, red dots represent imputed values at masked positions, blue curves represent observed data, light yellow
rectangles indicate Long-range Missing within a specific gap, and gray rectangles indicate Block Missing within a specific window. Examples correspond to sensor #4
from September 4 to 5, 2024.
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Figure 6. Visualizations of imputation performance comparison between Low-rank Autoregressive Tensor Completion and baseline models under 50% Mixed Missing
missing scenario on Z-city Pres data set. Examples correspond to sensor #6 from June 7 to 8, 2024.

Furthermore, beyond the promising imputation performance, the computational efficiency of LATC is also
validated. As detailed in Appendix A, a comprehensive comparison of LATC and baseline models is conducted
across eight missing scenarios and four data sets, along with an in-depth efficiency analysis. The results
demonstrate that LATC achieves a favorable balance between runtime and accuracy. Specifically, LATC
consistently outperforms TRMF and Missforest by a large margin in terms of running time, while maintaining
comparable or slightly better efficiency than LAMC and KNN. Although HaLRTC exhibits the fastest runtime,
this comes at the cost of poor imputation accuracy under complex missing patterns. Benefiting from its light-
weight yet effective design, LATC demonstrates stable and efficient performance across different data sets and
missing scenarios, which confirms its practical applicability for real-time imputation tasks in SWNs.

4.2. Effect of Truncation and Autoregressive Regularization
4.2.1. Parameter Analysis

In this study, two fundamental properties—global low-rank structure and local temporal continuity—are lever-
aged to model spatiotemporal WDN data with missing values. To better capture the importance of the truncation
operation and autoregressive regularization in missing WDN data imputation, heat maps of LATC imputation
performance are presented across diverse missing scenarios. Through a comparison of results from both real-
world and simulated flow data sets, as shown in Figures 7 and 8, it is observed that the LATC model achieves
optimal performance with large coefficient ¢ and truncation r on Z-city Flow data set, whereas it performs best
with small coefficient ¢ and truncation r on Sim-net Flow data set. This result validates the importance of
minimizing temporal variation for flow data imputation tasks in real-world WDNSs. In other words, autoregressive
regularization can effectively characterize the underlying time-varying system behaviors and model strong local
patterns in actual sensor time series, which are often accompanied by noise, randomness, and fluctuations. In
addition, real-world network data exhibit more complex temporal demand patterns and spatial dependencies than
simulated data, resulting in a relatively large truncation for accurately representing global redundancy of Z-city
Flow data set.

Alternatively, the same experiment is conducted on two additional data sets to provide a more thorough evalu-
ation of LATC. Detailed plots of Z-City Pres data set and Sim-Net Pres data set are presented in Figures S2 and S3
in Supporting Information S1. The results also suggest that autoregressive regularization plays a significant role in
real-world pressure data imputation tasks across all BM and MM scenarios. In contrast, the truncation mainly
determines the imputation quality for the LM scenario.
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Figure 7. SMAPE:s of Low-rank Autoregressive Tensor Completion imputation on Z-city Flow data set, withp = 1 x 107
for (c), (¢) and (h) and p = 1 X 10~* for other missing scenarios. The corresponding parameters of minimum Symmetric
Mean Absolute Percentage Error are: (a) ¢ = 10,7 = 25; (b) ¢ = 10,7 =20; (¢c) ¢ = 5,r = 15;(d) ¢ = 10,r = 15;

(e)c =10,r =20; () c =5,r =20.(g) ¢ =5,r =20; (h) c =10, = 20.

4.2.2. Ablation Study

To better investigate the impacts of the truncation operation and autoregressive regularization on imputation, two
variants of LATC are designed: LATC with NN (LATC-NN) and LRTC with TNN (LRTC-TNN). Specifically,
LATC-NN substitutes TNN minimization with NN minimization, while LRTC-TNN omits the temporal
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Figure 8. SMAPEs of Low-rank Autoregressive Tensor Completion imputation on Sim-net Flow data set, with
p =1 x 107 for all missing scenarios. The corresponding parameters of minimum Symmetric Mean Absolute Percentage
Error are: (a) ¢ = 1,r = 10; (b)c = 1/5,r = 10;(¢c) c = 1/10,r = 10; (d) ¢ = 1/10,r = 10; (e) ¢ = 1/5,r = 10;
) c =1/10,r = 10; (g) ¢ = 1/5,r = 10; (h) ¢ = 1/10,r = 10.
regularization term. The parameters ¢ for LATC-NN and r for LRTC-TNN are optimized using the same search
space as that of LATC. The results in Figure 9 show that LATC consistently outperforms two other models across
all missing scenarios on real-world data sets.
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Figure 9. Bar charts of imputation performance under eight missing scenarios on four data sets. (a) and (b) report SMAPE
results on Z-city Flow data set and Sim-net Flow data set, respectively; (c) and (d) report RMSE results on Z-city Pres data set
and Sim-net Pres data set, respectively.

Compared to LRTC-NN, LATC achieves a 10.8%-19.0% improvement in SMAPE on Z-city Flow data set and a
4.0%-14.2% improvement in RMSE on Z-city Pres data set. This result is further validated and explained through
a case analysis of the LM scenario, as shown in Figure 10. When a sensor loses observations for an entire day, the
LATC model more accurately reconstructs LM data. Imputation examples in Figures 10a and 10b highlight the
remarkable advantages of TNN minimization over NN minimization in capturing low-rank structure and
modeling global redundancy. In particular, the pressure curve exhibits a noticeable drop at 5:45 a.m. because of
the surge in water demand during the morning peak hour, and only LATC identifies this dynamic pattern. As
illustrated in Figures 10c and 10d, the LM data is estimated by effectively exploiting the principal correlations
from neighboring sensors and similar days.

Additionally, the strong local correlation in real-world WDN time series is encoded by minimizing the temporal
variation, and the experimental results corroborate the effectiveness of this strategy. Compared to LRTC-TNN,
LATC demonstrates up to a 10.6% improvement in SMAPE on Z-city Flow data set and an 8.0% improvement in
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Figure 10. Visualizations of truncation effects on capturing global low-rank structure. (a) and (b) present data from sensor
#12 of Z-city Pres data set on 28 March 2024. (c) Presents pressure curves of sensor #12 and its two spatially adjacent sensors
on 28 March 2024. (d) Presents pressure curves of sensor #12 on 28 March 2024, the previous day, and the corresponding day
of the previous week.
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Figure 11. Visualizations of imputation performance comparison between Low-rank Autoregressive Tensor Completion and
Low-Rank Tensor Completion with Truncated Nuclear Norm. (a) and (b) present data from sensor #3 of Z-city Flow data set
on 27 August 2024. (c) and (d) present data from sensor #11 of Z-city Pres data set on 11 May 2024.

RMSE on Z-city Pres data set. Figure 11 illustrates several examples of imputation on these data sets, suggesting
that autoregressive regularization is a highly effective tool for real-world WDN data imputation tasks. In contrast,
the imputation performance of LATC slightly surpasses that of LRTC-TNN on both simulated data sets. That is,
for simpler data sets, relying solely on low-rank models might be sufficient to achieve reasonable estimation
accuracy.

5. Discussion

LATC suggests a flexible and general method for the efficient and accurate imputation of missing values in
various WDN data sets. Experimental results on real-world data sets show that LATC not only surpasses state-of-
the-art baseline methods in common missing scenarios, but also outperforms existing approaches in data sets
characterized by high missing rates and MM patterns. Compared with previous studies on WDN data imputation,
LATC achieves significant advancements in both methodology and practical applicability. For instance, Osman
et al. (2018) relied on manual model selection based on missing data characteristics, resulting in high compu-
tational costs and poor scalability. LATC addresses this challenge with an efficient and unified framework
capable of automatically adapting to diverse spatiotemporal missing patterns. Furthermore, when applying
methods such as Chu et al. (2021) or those evaluated by Zanfei, Menapace, et al. (2022)—including KNN and
Missforest—they struggle with structured missing patterns like long-range gaps and spatially continuous blocks
due to limited spatiotemporal modeling capabilities. Consequently, their imputation performance often degrades
severely in complex real-world WDN scenarios, failing to meet the practical requirements of SWN applications.
In contrast, LATC explicitly models both global low-rank structures and local temporal dynamics, enabling
robust and reliable imputation across diverse and severe missing conditions, which is essential for real-world
SWN operations.

As analyzed in Section 4.2, LATC's success is mainly attributed to two factors. The first lies in its ability to
characterize global redundancy inherent in spatiotemporal WDN data. In particular, the TNN component acts as a
“feature selector”, preserving the most prominent features that contribute significantly to data generation while
minimizing the impact of noise or inessential patterns. Second, unlike conventional low-rank prior-based
methods, LATC integrates autoregressive regularization, making it more effective for handling temporal de-
pendencies in real-world WDN data sets. As shown in Figure 11, the LRTC-TNN model appears to overfit short-
term fluctuations due to the lack of consideration for local correlations in sensor time series. Conversely, by
incorporating an autoregressive regularization scheme, LATC greatly enhances the rationality and credibility of
the imputation results, which is especially valuable for decision-making applications. The autoregressive pro-
cesses impose continuity constraints on the temporal dimension, allowing the imputed values to reflect the
authentic temporal dynamics and reducing the interpretive difficulty posed by discontinuous “jumps.” Thus,
although LATC is a data-driven imputation model based on optimization, it retains good interpretability for
spatiotemporal WDN data imputation.
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In developing an approach for imputing missing sensor data, the starting point of this study is the unique nature of
the WDN data itself, particularly the spatiotemporal redundancy arising from the network topology, sensor
placement, residential water consumption patterns, and so on. This redundancy is commonly observed in diverse
WDNE, regardless of their size or components. Therefore, the proposed approach can be readily generalized to the
vast majority of WDNs. However, this study does not sufficiently account for the correlation between LATC and
the WDN states when modeling spatiotemporal data. If sensor data is missing during abnormal events (e.g., pipe
bursts) or changes in component states (e.g., valve openings or closings), the imputed data may fail to capture the
true dynamics of the pipe network. This problem can be addressed by incorporating the component state infor-
mation associated with the sensor as a constraint when solving Equation 10.

Moreover, a limitation of this study is the lack of an appropriate water quality data set for experiments. Indeed,
with the increasing emphasis on water quality monitoring at both the network and residential taps, parameters
such as residual chlorine and ORP are being collected and analyzed in real-time (Zeng et al., 2018). Since large-
scale spatiotemporal water quality data also exhibit daily similarity (Martinez Paz et al., 2022), an in-depth
exploration of LATC's applicability to such data could provide valuable insights.

Overall, LATC shows promising application prospects for data quality enhancement in SWNSs, and this study is
expected to serve as a starting point for further exploration in this field. Specifically, the increasing popularity of
smart meters (Gurung et al., 2014; Pesantez et al., 2020) and monitoring equipment is bringing new problems in
acquiring, transmitting, and storing large-scale data (Mei et al., 2022). Asynchronous uploading (T. Yu
et al., 2022) and compressed sensing (Wei et al., 2019) are considered effective methods to reduce the operating
costs of sensor systems. Reconstructing dynamics of the entire WDN from data partially collected by these two
methods can be approached as a problem of missing value imputation, aligning precisely with the application
scenario of this study.

6. Conclusion

Spatiotemporal WDN data offer unprecedented opportunities for advancing SWNs. However, missing values
hinder the full potential of these networks. This study treats the missing value imputation task as the low-rank
completion of a third-order tensor (sensors X intervals X days) from the viewpoint of high-dimensional data
analysis. By leveraging the inherent redundancies and temporal dependencies within spatiotemporal WDN data, a
general LATC method is developed to achieve accurate and efficient data imputation. Extensive experiments on
large-scale WDN data sets demonstrate that LATC performs significantly better than some state-of-the-art
baseline models. To our knowledge, this study is the first to provide comprehensive theoretical and experi-
mental insights into spatiotemporal data imputation for real-world WDNs with complex missing patterns.

Several research directions remain for future exploration. First, the number of sensors in the real-world data sets is
still insufficient. Therefore, it is highly desirable to test whether LATC remains accurate and efficient in WDN5s
with denser sensor placement. Second, tensor completion techniques can separate data into low-rank and sparse
components. This capability could be extended to denoising and anomaly detection, addressing noise and outliers
commonly found in WDN sensor data (Lu et al., 2020). By addressing these challenges, LATC has the potential to
enhance data quality and reliability in SWNs, supporting a wide range of real-time applications and improving
overall water distribution management.

Appendix A: Computational Efficiency Analysis

To further assess the computational efficiency of the proposed LATC model, the running time is compared
against several baseline methods under eight missing scenarios on four data sets, as shown in Table Al. The
reported results are the average running time over 10 trials under the optimal parameter settings for each model.
All experiments are conducted on a desktop equipped with an AMD Ryzen 7 5700G CPU and 32 GB RAM, using
Python 3.11 as the programming environment. The comparison yields the following major findings regarding
computational efficiency and the method's usability for real-time applications.

Firstly, in terms of computational efficiency, HaLRTC achieves the fastest runtime across all scenarios due to its
simple convex optimization framework without temporal modeling. However, this simplicity results in poor
imputation accuracy, especially under structured missing scenarios and on large-scale data sets, as shown in
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Running Time Comparison (in Seconds) Under Eight Missing Scenarios on Four Data Sets
Data set Scenario LATC HaLRTC TRMF LAMC KNN Missforest
Z-city Flow 30% RM 481.87 28.48 2262.54 557.95 577.32 2849.52
60% RM 558.55 31.58 2109.49 500.52 774.86 1,619.66
30% LM 474.08 29.44 1,978.15 461.77 519.84 2281.71
30% BM 459.59 30.48 1,313.26 646.57 / /
60% BM 534.36 37.48 1,249.26 666.65 / /
30% MM 397.52 30.56 2289.20 634.55 / /
50% MM 442.00 32.97 2147.28 607.41 / /
70% MM 573.97 38.38 2044.86 627.66 / /
Sim-net Flow 30% RM 171.19 3.69 244.49 222.20 25.75 1,385.99
60% RM 171.86 8.14 364.55 140.06 38.97 906.55
30% LM 188.37 7.11 397.50 213.68 2837 769.18
30% BM 187.99 7.31 350.91 258.44 / /
60% BM 183.89 8.27 335.66 256.76 / /
30% MM 170.21 7.47 344.05 219.97 / /
50% MM 165.71 7.85 225.67 229.89 / /
70% MM 178.69 8.73 215.61 209.45 / /
Z-city Pres 30% RM 187.63 6.26 1,008.27 201.11 191.00 494.96
60% RM 215.15 6.89 982.26 177.22 219.83 488.96
30% LM 195.22 6.11 1,032.68 162.31 148.30 497.08
30% BM 195.17 6.75 626.14 273.94 / /
60% BM 208.43 8.30 597.75 273.81 / /
30% MM 197.48 6.29 962.61 267.45 / /
50% MM 204.45 6.97 926.48 243.57 / /
70% MM 228.13 7.85 934.47 247.32 / /
Sim-net Pres 30% RM 68.94 2.78 404.28 71.91 10.52 263.46
60% RM 75.16 3.22 349.28 86.59 16.70 236.54
30% LM 69.68 2.96 344.62 68.98 10.79 228.18
30% BM 72.57 2.44 207.83 101.74 / /
60% BM 73.81 2.94 302.24 118.86 / /
30% MM 67.35 2.92 223.07 94.09 / /
50% MM 69.91 3.30 210.17 101.56 / /
70% MM 76.61 3.36 286.86 101.53 / /
Note. Values highlighted in boldface represent the best performance within each respective row, while values with underlines
indicate the second-best performance. The runtime of KNN and Missforest is marked as *“/”” under BM (Block Missing) and
MM (Mixed Missing) scenarios because these methods fail to produce valid results due to their inability to handle spatially
continuous or mixed missing patterns.
Tables 2 and 3. In contrast, LATC achieves a better trade-off between efficiency and accuracy, delivering
consistently superior imputation performance with only a moderate increase in runtime.
Compared to TRMF and Missforest—both burdened by high computational costs from iterative matrix factor-
ization or tree-based models—LATC reduces runtime by 70%—80% on average while delivering comparable or
better accuracy, especially on large-scale data sets like Z-city Flow and Z-city Pres. LATC also outperforms
LAMC, which integrates autoregressive regularization, by offering similar or better efficiency and noticeably
higher accuracy under BM and MM scenarios. KNN performs adequately under simple RM and LM scenarios on
small data sets (e.g., Sim-net Flow and Sim-net Pres) but suffers from poor scalability. It completely fails under
BM and MM scenarios on larger data sets due to its inability to handle structured and high-dimensional missing
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patterns. In contrast, LATC maintains reliable performance across all data sets and missing patterns, underscoring
its robustness for real-time applications in SWNs.

Overall, LATC offers a superior balance between accuracy, computational efficiency, and robustness, even under
the most challenging BM and MM scenarios, making it well-suited for practical large-scale WDN data imputation
tasks.
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