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 A B S T R A C T

Water distribution systems (WDSs) should deliver safe and affordable water for communities, yet consumers 
are regularly exposed to tap water that violates federal guidelines for pathogens and chemicals. In response 
to reduced water quality, consumers may shift demands away from tap water to bottled water, increasing 
household water spending. Intra-system water quality fluctuates with changes in demands, a consequence 
observed during the COVID-19 pandemic. This research develops the COVID-19 social-distancing and tap water 
avoidance agent-based model (COST-ABM), which simulates water quality in a water distribution network and 
decisions to avoid tap water and purchase bottled water. COST-ABM is developed to assess equitable access 
to affordable water. Agents represent water consumers that decide to avoid tap water by purchasing bottled 
water for cooking, cleaning, and hygienic end uses, reducing demand from the system. The agent-based model 
is tightly coupled with a water distribution system model that calculates the spatiotemporal dynamics of water 
quality in a pipe network, which is used in agent decision-making. Equity is evaluated in a bottom-up approach 
using the cost of tap and bottled water as a percentage of household income, calculated at each household. The 
framework is applied for a virtual water distribution system, and results demonstrate economic inequities in 
water affordability. This research presents a framework to assess equity in a WDS based on tap water avoidance 
and water affordability and can be used to facilitate infrastructure management that provides equitable access 
to safe and affordable water.
1. Introduction

Access to safe and affordable water is essential to promote public 
health and economic development. Public water distribution systems 
(WDSs) serve 286 million people in the United States, yet in recent 
years, millions of people have been exposed to tap water that vio-
lates federal guidelines for pathogens, nitrates, arsenic, and harmful 
disinfection by-products (Allaire et al., 2018; Fedinick et al., 2019; 
Mueller & Gasteyer, 2021). Water stagnation and dead end pipes lead 
to the decay of residual chlorine, allowing microbes to flourish (Abokifa 
et al., 2016; Charisiadis et al., 2015; García-Ávila et al., 2021; Liu 
et al., 2017). Chemical constituents interact with hydraulic dynamics, 
leading to potential spikes in disinfection by-products and metal ele-
ments in pipe systems (Maheshwari et al., 2020; Martin et al., 2022). 
Contaminants in drinking water cause gastrointestinal illnesses, harm to 
nervous and reproductive systems, and chronic diseases (USEPA, 2024). 
The dynamics of the hydraulic system play an important role in the 
fate and transport of contaminants, directly affecting spatial variations 
in tap water quality. Large and unexpected changes in demand can 
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exacerbate hotspots of poor water quality by causing changes in flow 
direction, velocity, and stagnation. The complex interaction between 
water demand changes and intra-system water quality disparities is 
largely unknown.

One example of documented system-wide demand changes was the 
COVID-19 pandemic. The COVID-19 pandemic changed many aspects 
of daily life for people around the world, including work schedules and 
the willingness to gather in groups or public settings, all with the goal 
of protecting personal health. By adopting social distancing behaviors, 
individuals spent more time at home and less time in public spaces 
including places of work and leisure. Changes in the spatio-temporal 
patterns of individuals drove changes in water demand (Cahill et al., 
2022). The primary change observed in water demand was an increase 
in residential demand caused by working from home, worker hour re-
duction or layoff, and unemployment. Water utilities reported changes 
in water demand, changes in water quality, and necessary adjustments 
in chlorine dosing as a result of COVID-19 demand changes (Berglund 
et al., 2022; Spearing et al., 2021). Vizanko, Kadinski, Ostfeld et al. 
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(2024) quantified the connection between COVID-19 social distancing 
and water demand using an ABM and found water quality degradation 
in residential locations near industrial locations without characterizing 
the ramifications of water quality degradation.

Intra-system changes in water quality can create inequities in access 
to clean and affordable water. Deterioration of tap water quality, man-
ifested as taste, color, and odor, leads to tap water avoidance (Doria, 
2006; Doria et al., 2009; Hamed et al., 2022; Levêque & Burns, 2017). 
In addition, households choose to avoid tap water in response to public 
reports of drinking water quality (Chatterjee et al., 2022; Ochoo et al., 
2017; Pierce et al., 2019) and risk perceptions (Grupper et al., 2021; 
Hu et al., 2011; Johnstone & Serret, 2012; Levêque & Burns, 2017; 
Park et al., 2023; Pierce & Gonzalez, 2017; Weisner et al., 2020). 
Avoiding tap water significantly increases household spending on water 
because bottled water is, on average, 100 times more expensive than 
tap water (IBWA, 2021a; Teodoro, 2018). Low-income and minority 
households are vulnerable to water affordability concerns, as they are 
more likely to be exposed to contaminated tap water, less likely to 
trust tap water, and more likely to consume disproportionate amounts 
of bottled water (Balazs & Ray, 2014; Doria, 2010; Fedinick et al., 
2019; Gorelick et al., 2011; Hanna-Attisha et al., 2016; Hobson et al., 
2007; Hu et al., 2011; Huerta-Saenz et al., 2012; Javidi & Pierce, 
2018; Pierce & Gonzalez, 2017; Regnier et al., 2015; Schaider et al., 
2019; Scherzer et al., 2010; VanDerslice, 2011). Water equity has been 
evaluated based on access to affordable water, calculated as the cost 
of water as a percentage of median household income (Goddard et al., 
2022). Water is considered affordable for the community when the ratio 
is below a predetermined threshold, such as 4.0 or 4.5% (Cardoso & 
Wichman, 2022; USEPA, 1984). Cardoso and Wichman (2022) adopted 
a value of 4.5% to represent the cost of water equivalent to working 
eight hours at minimum wage, and Teodoro (2018) used the disposable 
income for the lower quintile instead of the median household income 
to calculate the water affordability ratio. Karrenberg et al. (2024) 
modeled water affordability based on the cost of water as a percent 
of income. Other research studies applied the Gini index and Thiel 
Index to assess equity concerns in water affordability at city, county, 
and national scales (Babuna et al., 2020; Goddard et al., 2022; He 
et al., 2020; Malakar & Mishra, 2017; Malakar et al., 2018). A related 
study developed the water injustice model to assess access to safe 
water for counties in the U.S. by evaluating the number of households 
with incomplete household plumbing, community water systems that 
violate the Safe Drinking Water Act, and permit holders that do not 
comply with the Clean Water Act (Mueller & Gasteyer, 2021). Existing 
models evaluate equity at a community-level without accounting for 
the distribution of water quality within a WDS, uneven distribution 
of resources within a population of water consumers, and decisions to 
avoid tap water (Babuna et al., 2023; Karrenberg et al., 2024; Malakar 
& Mishra, 2017; Mueller & Gasteyer, 2021).

Inequities in water affordability can emerge due to the interplay 
between complex spatio-temporal hydraulic conditions and household-
level decisions to avoid tap water. Large demand changes lead to 
fluctuations in flows and pipe velocities, which can exacerbate wa-
ter stagnation in pipes and local water quality deterioration, leading 
to expensive tap water avoidance behaviors (Blokker et al., 2016; 
Machell & Boxall, 2012, 2014; USEPA, 2002). However, intra-system 
inequities within WDNs remain an unexplored area of research. An 
intersectional and sociotechnical approach is needed to study and sim-
ulate intra-system equity based on interactions among complex system 
actors and infrastructure in the context of drinking water quality, 
tap water avoidance, and affordability. A complex adaptive system 
(CAS) approach characterizes heterogeneous and interacting agents 
that generate dynamic feedback regimes and emergent system-level 
phenomena (Axelrod, 1997; Holland, 1996; Miller & Page, 2007). 
Agent-based modeling (ABM) simulates CASs by encoding agents with 
heterogeneous parameters and rules of behavior that facilitate interac-
tion with other agents and the environment (Wilensky & Rand, 2015). 
2 
ABMs are well suited to model intersectional equity by simulating 
interactions of heterogeneous actors and their unique experience of 
the environment (Liu et al., 2025; Williams et al., 2022), and ABMs 
have been applied to explore the adaptation of consumer water de-
mands and the performance of urban water systems (Bakhtiari et al., 
2020; Berglund et al., 2023; Vidal-Lamolla et al., 2024). An ABM ap-
proach was developed to simulate interactions among water consumers 
and a hydraulic network to assess contamination response (Kadinski, 
Berglund et al., 2022; Kadinski et al., 2022; Shafiee & Berglund, 2017; 
Shafiee et al., 2018; Shafiee & Zechman, 2013; Strickling et al., 2020; 
Zechman, 2011), premise plumbing (Burkhardt et al., 2023), and water 
reuse (Kandiah et al., 2016; Ramsey et al., 2020). Vizanko, Kadinski, 
Ostfeld et al. (2024) developed a tightly-coupled framework to explore 
water demand and water age changes caused by COVID-19 social 
distancing behaviors. The framework was applied to identify inequities 
in exposure to poor water quality that emerge due to stagnating water 
near industrial areas, but did not analyze how changes in water quality 
impact tap water avoidance and household water expenses. Another 
study used an ABM approach to simulate and assess inequities in 
affordable water caused by time of use tariffs, but did not explore agent 
interaction with a hydraulic network (Karrenberg et al., 2024). New 
modeling approaches are needed to quantify inequities that arise from 
complex interactions between human behaviors and hydraulics.

The goal of this research is to develop an ABM framework to 
capture the emergence of water equity as a community of consumers 
respond to the quality of drinking water provided by a WDS. This 
research presents the COVID-19 social-distancing and tap water avoid-
ance agent-based model (COST-ABM), which extends an existing ABM 
framework that couples household-level water use decisions with a 
WDS model (Vizanko, Kadinski, Cummings et al., 2024). Agents rep-
resent households that transmit COVID-19 and make social distancing 
decisions, updating demands at residential, industrial, and commer-
cial nodes. A WDS model is used to simulate water quality changes 
as changing demand patterns lead to stagnated water and increased 
water age. This research develops new modeling to simulate tap water 
avoidance decisions, and agents select to use bottled water to meet 
different end uses in response to high water age. Equity is assessed 
as water affordability for low and high income groups, based on the 
cost of tap and bottled water. COST-ABM is applied for a case study 
to demonstrate disparities in access to safe and affordable water. This 
work presents a framework to assess changes to the affordability of 
water based on changing water quality and tap water avoidance.

The manuscript is organized as follows. Section 2 describes the 
materials and methods used to develop COST-ABM. The illustrative 
case study and modeling scenarios are described in Section 3. Results 
of applying COST-ABM to the case study are shown in Section 4. 
Section 5 provides a discussion of the results in the context of previous 
related literature, and Section 6 summarizes the research with broad 
conclusions of this work. Data required to implement the COST-ABM 
framework is provided in the Supplemental Information.

2. COVID-19 social distancing and tap water avoidance agent-
based model (COST-ABM)

COST-ABM was developed using an existing framework that in-
corporates a susceptible–exposed–infected–recovered (SEIR) COVID-19 
transmission model, a social distancing model, and a hydraulic model 
(Vizanko, Kadinski, Cummings et al., 2024). This research adds a water 
equity model that simulates tap water avoidance in response to high 
water age. The ABM framework is updated to assess the total cost of 
water as the sum of the cost of tap and bottled water and reports the 
cost of water as the percent of income (Fig.  1). The water equity model 
is describe as a sub-model in the COST-ABM framework (Section 2.4). 
Households that buy bottled water use less tap water, further changing 
water flows and water quality in the WDS.
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Fig. 1. COST-ABM integrates a new water equity model.
Table 1
Agent parameters are used to model tap water avoidance and water affordability. TWA: tap water
avoidance.
 Parameter Symbol Value  
 Water age 𝐴𝑤 Hydraulic simulation 
 Decision to drink BW modifier 𝜏𝑑 130  
 Decision to cook with BW modifier 𝜏𝑐 140  
 Decision to use BW for hygiene modifier 𝜏ℎ 150  
 Threshold to use BW for [drinking, cooking, hygiene] 𝑇𝑖 Eq. (1)  
 Decision to [drink, cook, hygiene] with BW (TWA) 𝐷𝑖 [yes, no]  
 Tap water base rate 𝐵𝑅𝑤 $15.55  
 Sewer base rate 𝐵𝑅𝑤 $16.21  
 Tap water unit price 𝐶𝑅𝑤 $0.000844/L  
 Sewer unit price 𝐶𝑅𝑠 $0.000816/L  
 Bottled water unit price 𝐶𝑅𝑏𝑤 $0.325/L  
 Tap water demand 𝑄𝑡𝑤 Eq. (7)  
 Bottled water demand 𝑄𝑏𝑤 Eq. (6)  
 Drinking water demand reduction 𝑄𝑅𝑑 Eq. (3)  
 Cooking water demand reduction 𝑄𝑅𝑑 Eq. (4)  
 Hygiene water demand reduction 𝑄𝑅ℎ Eq. (5)  
 BW cost 𝐶𝑏𝑤 Eq. (12)  
 TW cost 𝐶𝑡𝑤 Eq. (11)  
 Water cost 𝐶𝑊 Eq. (8)  
 Household income 𝐼𝐻 Section 2.3.2  
COST-ABM developed in this research is described using the ODD+D 
protocol (Müller et al., 2013), which is an expansion of the ODD 
protocol (Grimm et al., 2006). The ODD+D protocol includes overview, 
design concepts, and details. A description of human decision-making 
is included in design concepts.

2.1. Overview

2.1.1. Purpose
The purpose of COST-ABM is to quantify the distribution of financial 

burden of water quality changes and tap water avoidance caused by 
social distancing during the COVID-19 pandemic.

2.1.2. Entities, state variables, and scales
An agent represents a person that consumes water at the node it 

occupies. Agents make decisions that affect tap and bottled water de-
mand (Table  1). Agents update decisions to use bottled water based on 
the water age at the node they occupy. Agents are assigned COVID-19 
threshold parameters (Table  B.1) and state variables that are updated 
to reflect an agent’s COVID-19 status, time spent in phases of COVID-19 
disease, and decision-making (Table  B.2).

The physical environment of the ABM is represented by a hydraulic 
network composed of nodes, pipes, pumps, tanks, and valves. Agents 
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move between residential and non-residential nodes based on diurnal 
schedules. Social distancing changes movement patterns, leading to 
changes in the water demands exerted by agents and, therefore, in the 
hydraulic response of the system. A small-world network (SWN) (Watts 
& Strogatz, 1998) is used to simulate agent social interactions, connect-
ing each agent with six other agents that pass information about their 
experience with COVID-19. Each simulation is run at hourly time steps 
for 6 months (180 days). Agent movement is updated every hourly time 
step, COVID-19 transmission information is updated every day, and tap 
water avoidance behaviors are updated every month.

2.1.3. Process overview and scheduling
Agents and households perform activities in hourly (H𝑡), daily (D𝑡), 

and monthly (M𝑡) steps (Vizanko, Kadinski, Ostfeld et al., 2024). At 
hourly time steps, agents move between residential and non-residential 
locations, update COVID-19 timing indicators (𝑡𝑒𝑥𝑝, 𝑡𝑖𝑛𝑓 , 𝑡𝑠𝑒𝑣, and 𝑡𝑠𝑦𝑚𝑝), 
transmit COVID-19, interact with media by updating mass media ex-
posure (𝐶𝑚𝑒𝑑) based on hourly probabilities (Table SI.2), and exert 
water demand at a network node. At daily time steps, agents update 
COVID-19 infection status state variables (𝑆, 𝑆𝑠𝑦𝑚𝑝, and 𝑆𝑖𝑛𝑓 ), personal 
experience with COVID-19 state variable (𝐶𝑝𝑒𝑟), and friends and family 
COVID-19 status state variable (𝐶𝑓𝑓 ). Agents also update decisions 
to adopt social distancing measures (work from home, dine out less, 
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grocery shop less, and wear personal protective equipment (PPE)) using 
individual Bayesian Belief Network (BBN) models on a daily time 
step. At monthly time steps, households of agents calculate the cost 
of buying tap and bottled water at their home node (𝐶𝑡𝑤 and 𝐶𝑏𝑤, 
respectively), update decisions to use bottled water based on water age 
(𝐷𝑖), and update the demand for tap and bottled water for their home 
node (𝑄𝑡𝑤 and 𝑄𝑏𝑤, respectively). For more information on the agent 
parameters and state variables, see Tables  B.1 and B.2. Sub-models for 
the water equity model (actions that are taken at monthly steps) are 
presented in Section 2.4. Sub-models for hourly and daily steps are 
adapted from Vizanko, Kadinski, Ostfeld et al. (2024) and included in 
the Appendix (Appendix  A).

2.2. Design concepts

2.2.1. Theoretical and empirical background
Adoption of TWA Behaviors: Organoleptics, or taste, odor, and color, 
of tap water is a primary reason individuals buy bottled water (Do-
ria, 2010). Many water quality factors can impact the formation of 
taste, odor, and color compounds, and this framework uses water age 
to represent poor water quality. Three TWA behaviors are modeled, 
including drinking bottled water, cooking with bottled water, and using 
bottled water for teeth brushing. These actions were selected as the 
most probable actions to require bottled water as they include direct 
ingestion of water. Water age thresholds that drive TWA behaviors are 
based on research that demonstrated a reduction in total chlorine and 
an increase in heterotrophic plate count (HPC) values after water age 
reached values of 60–80 h (Machell & Boxall, 2014). Because HPC val-
ues are not directly linked to organoleptic values, conservative values 
of 130–150 h were selected for TWA decision thresholds. A threshold of 
130 h was selected for drinking bottled water as the first TWA behavior 
that would be adopted, and a value of 150 h was selected for hygiene, 
based on the assumption that households would resist buying bottled 
water for teeth brushing until water quality had worsened further. 
COST-ABM does not model a connection between COVID-19 prevention 
measures and TWA behaviors. It is assumed that drinking, cooking and 
teeth brushing rates are unchanged when individuals practice social 
distancing behaviors.
COVID-19 Transmission: Disease transmission of COVID-19 is mod-
eled using the formulation developed for Covasim, which is an ABM 
that provides mathematical relationships and parameter values for the 
COVID-19 SEIR model (Kerr et al., 2021). Susceptible agents have an 
age-progressive probability of becoming exposed when occupying the 
same node as a infected agents. Agents progress through the four stages 
of the SEIR model and cannot be reinfected.
Adoption of Prevention Measures: Agents adopt prevention mea-
sures using a decision-making model that is based on the Protection 
Motivation Theory. BBN models were developed to use variables that 
represent threat appraisal and coping appraisal with decisions to adopt 
social distancing behaviors (Vizanko, Kadinski, Cummings et al., 2024). 
BBNs were trained using responses to a survey administered across 11 
countries in March and April 2020 for four social distancing behaviors, 
which are working from home, dining out less, shopping for groceries 
less, and wearing PPE (Figure SI.2, Figure SI.3, Figure SI.4, Figure SI.1). 
Variables that are used as input for BBN models are described in Table 
SI.3 and Table SI.4. Accuracy values for the four BBN models range 
from 66.5–95.2% and 𝐹1 values range from 52.8–82.1% (Table SI.5).
Demand Changes: Demand changes at residential nodes are simulated 
based on analysis of water demands during the first week of the 
pandemic (Pesantez et al., 2022). Data were collected at approximately 
20,000 accounts for a utility in California, and demands for March 2019 
and March 2020 were compared to assess changes due to a stay-at-
home order. Analysis demonstrated that demands during the pandemic 
were sustained throughout the day. The model represents the demand 
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change based on agent decisions to work from home: if 50% of agents at 
a residential node work from home, the demand pattern is changed to 
a flattened demand curve adapted from data collected during the first 
week of the COVID-19 pandemic (Pesantez et al., 2022). This represents 
a higher volume of water use during working hours and a higher total 
volume of water consumed (Table SI.1).

2.2.2. Individual decision-making
Decisions to adopt social distancing behaviors are simulated us-

ing BBN models. Agents adopt social distancing behaviors based on 
the posterior probability of each BBN (Figures SI.1, SI.2, SI.3, and 
SI.4) updated with input state variables, including COVID-19 status 
(𝐶𝑝𝑒𝑟), friends and family COVID-19 status (𝐶𝑓𝑓 ), and COVID-19 media 
exposure (𝐶𝑚𝑒𝑑).

The decision to adopt individual TWA behaviors (drink bottled 
water, cook with bottled water, and use bottled water for hygiene) is 
selected when the water age exceeds a threshold based on the specific 
TWA behavior. Decisions to adopt TWA behaviors are made once per 
month and are irreversible. If the water age falls below the threshold 
for a TWA behavior after it has been adopted, the agent will not revert 
back to tap water consumption. The assumption that TWA behaviors 
are irreversible was chosen based on the relatively short simulation 
period of six months, and it is assumed that consumers would not revert 
back to tap water within six months of a poor water quality event.

2.2.3. Collectives
At initialization, agents are grouped into households that are used 

to form each agent’s family network to represent a mindset on TWA 
behaviors that is shared within a household. All agents at a household 
share the same thresholds for TWA decision-making and select the same 
decision because the water age at each node is shared by all members of 
the household. Since TWA decision-making is shared by the household, 
tap and bottled water costs are also calculated at the household level.

2.2.4. Heterogeneity and stochasticity
Several agent parameters are assigned stochastically, which results 

in heterogeneity among agents. Water age thresholds, household in-
come, BBN parameters, residential and non-residential nodes, and time 
thresholds for each COVID-19 stage are stochastically assigned. Agents 
use media including TV and radio with stochasticity (Table SI.2), which 
contributes to heterogeneity in the information that agents use about 
COVID-19 to make social distancing decisions.

2.2.5. Observation
Parameters that are recorded each month include the number of 

households drinking bottled water, number of households cooking with 
bottled water, number of households using bottled water for hygiene, 
demand for tap water for each household, demand for bottled water for 
each household, cost of tap water for each household, and the cost of 
bottled water for each household.

2.3. Details

2.3.1. Implementation details
COST-ABM is implemented in Python version 3.12 using the Mesa 

package for ABM coordination and the Water Network Took for Re-
siliency (WNTR) for hydraulic analysis (Klise et al., 2017). All simula-
tions were run in parallel on a machine with a 2.10 GHz Intel Xeon 
Gold 6230 CPU with 40 cores and 128 GB of RAM.

2.3.2. Initialization
Nodes in the water network are initialized with average water age 

values from the base case scenario, and a warm-up period is run to 
ensure the water age at each node is at steady state. The warm-up 
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period converges when the change in average water age is less than 
0.001. Each simulation is initialized with 0.1% infected agents.

Time thresholds for each COVID-19 stage are drawn from log-
normal distributions (Kerr et al., 2021) (Table  B.1 and described 
by Vizanko, Kadinski, Ostfeld et al. (2024)). BBN parameters (Table 
SI.3) are assigned to each agent from the survey responses. To assign 
parameters to one agent, a survey response was selected randomly 
without replacement. Residential and non-residential nodes are ran-
domly assigned to agents based on the capacity of consumer agents 
of each node.

Households are initialized with an income drawn from a gamma 
distribution. Households are initialized with a water age threshold for 
each TWA behavior using a 𝛽 distribution with parameters 𝛼 = 3 and 
𝛽 = 1, which has a support of [0, 1] and a mean value of 0.75. The 
threshold is initialized with a minimum value of 24 h and a maximum 
of 𝜏𝑖 (see Table  1). Using the average value from the 𝛽 distribution of 
0.75, the average water age threshold for TWA behaviors for drinking, 
cooking and hygiene are 121.5 h, 130 h, and 136.5 h, respectively. 
𝑇𝑖 ∼ 𝐵𝑒𝑡𝑎(3, 1) ∗ 𝜏𝑖 + 24 (1)

2.3.3. Input data
Necessary input data include COVID-19 transition values, risk per-

ception variables for BBN training, time of use for radio and TV, 
and hydraulic information (including pipes, pumps, tanks, valves and 
demands), in addition to demographics, tap water cost, and income 
parameters representative of a location of interest.

2.4. Sub-models: Water equity model

Equations that are newly implemented in this research as the water 
equity model are described as follows. Descriptions for the remaining 
steps that are adapted from previous research (Vizanko, Kadinski, 
Ostfeld et al., 2024) are provided in Appendix  A.

The following steps are executed every 30 days within the water 
equity model. These calculations use data on agent mobility from the 
previous 30 days of simulation:

1. Households update decisions to use bottled water based on 
water age. Each household assesses the current water age at 
their home node, which is an output of the hydraulic simulation 
of the previous 30 days, and updates decisions to use bottled 
water for drinking, cooking, and hygiene (Eq.  (2)). 

𝐷𝑖 =

{

𝑁𝑜, if 𝐴𝑤 ≤ 𝑇𝑖
𝑌 𝑒𝑠, if 𝐴𝑤 > 𝑇𝑖

(2)

where 𝐷𝑖 is the decision to adopt TWA 𝑖, which includes [drink-
ing, cooking, hygiene], 𝐴𝑤 is the water age at the household 
node, and 𝑇𝑖 is the threshold for TWA 𝑖 (Table  1).

2. Households update tap and bottled water demand. Unad-
justed tap water demand, 𝑄𝑡𝑤,𝑢, for each node is calculated as 
a function of the number of agents occupying each node and the 
hourly demand pattern. The unadjusted tap water demand is the 
nodal demand if no TWA behaviors were adopted. Households 
that adopt TWA behaviors, i.e., 𝐷𝑖 = 𝑦𝑒𝑠, reduce the demand 
at the their home node, reducing the tap water demand. Drink-
ing water demand reduction is determined stochastically (Eq. 
(3)) (Crouch et al., 2021), cooking water demand is determined 
deterministically (Eq.  (4)) (Gleick, 1996), and hygiene water 
demand is determined stochastically using a triangular function 
(Eq.  (5)) (Crouch et al., 2021). 

𝑄𝑅𝑑 =
30
∑

𝑖=1
𝐿𝑁(2.0, 0.75) ∗ 𝑁𝑎,𝑖 (3)

𝑄𝑅𝑐 =
30
∑

11.5 ∗ 𝑁𝑎,𝑖 (4)

𝑖=1
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𝑄𝑅ℎ =
30
∑

𝑖=1
2 ∗ 𝑇𝑅(𝑚𝑖𝑛 = 0.25, 𝑚𝑎𝑥 = 1.5, 𝑚𝑜𝑑𝑒 = 0.5) (5)

where 𝑄𝑅𝑑 is the daily drinking water demand reduction (L), 
𝑄𝑅𝑐 is the daily cooking water demand reduction (L), 𝑄𝑅ℎ is 
the daily hygiene water demand reduction (L), and 𝑁𝑎,𝑖 is the 
average number of agents at each node for day 𝑖. The reduction 
is calculated each day and aggregated monthly. 
𝑄𝑏𝑤 = 𝑄𝑅𝑑 +𝑄𝑅𝑐 +𝑄𝑅ℎ (6)

The tap water demand is the unadjusted tap water demand less 
the bottled water demand (Eq.  (7)). 
𝑄𝑡𝑤 = 𝑄𝑡𝑤,𝑢 −𝑄𝑏𝑤 (7)

3. Households calculate the cost of buying water. The cost of 
tap and bottled water is the summation of the two cost values 
(Eq.  (8)). 
𝐶𝑊 = 𝐶𝑡𝑤 + 𝐶𝑏𝑤 (8)

where 𝐶𝑡𝑤 and 𝐶𝑏𝑤 are the cost of purchasing tap water and 
bottled water ($), respectively, and 𝐶𝑊  is the total cost of water. 
The cost of purchasing tap water (Eq.  (11)) has two components, 
a cost for supply (Eq.  (9)) and a cost for sewer (Eq.  (10)). 

𝑊 = 𝐵𝑅𝑤 +

{

0, if 𝑄𝑡𝑤 ≤ 8, 495𝐿
𝑄𝑡𝑤 ∗ 𝐶𝑅𝑤, if 𝑄𝑡𝑤 > 8, 495𝐿

(9)

𝑆 = 𝐵𝑅𝑠 +𝑄𝑡𝑤 ∗ 𝐶𝑅𝑠 (10)

𝐶𝑡𝑤 = 𝑊 + 𝑆 (11)

where 𝑊  is the cost for water supply, 𝐵𝑅𝑤 is the tap water base 
rate, 𝑄𝑡𝑤 is the tap water demand, 𝐶𝑅𝑤 is the tap water unit 
price, 𝑆 is the cost to sewer water, 𝐵𝑅𝑠 is the sewer base rate, 
and 𝐶𝑅𝑠 is the sewer unit rate.
The cost of bottled water for a household for a month is the 
product of the bottled water demand, 𝑄𝑏𝑤, and the bottled water 
unit price, 𝐶𝑅𝑏𝑤 (Eq.  (12)). 
𝐶𝑏𝑤 = 𝑄𝑏𝑤 ∗ 𝐶𝑅𝑏𝑤 (12)

3. Illustrative case study: Micropolis

The virtual water distribution network, Micropolis, is used to
demonstrate the COST-ABM framework (Fig.  2). The infrastructure 
model for Micropolis was developed by Brumbelow et al. (2007), and 
agent-based models of the consumers in the population were developed 
by Zechman (2011) based on the demand data in the infrastructure 
model. This research develops another layer of data to describe the 
income for households in Micropolis, allowing new research in equity 
for under-resourced groups. This research models agent income using 
data from Clinton, North Carolina. Clinton was selected for this appli-
cation because the population served by the municipal water provider 
in Clinton is 7000, similar to the size of Micropolis. Further, the Clinton 
water system has been in violation of the Safe Water Drinking Act twice 
in the last 10 years.

3.1. Water infrastructure modeling

Micropolis consists of 434 residential nodes, 15 commercial nodes, 
and 9 industrial nodes. Four of the 434 residential nodes are multi-
family housing units with 10–200 households per node. Of the 15 
commercial nodes, two are grocery stores and three are restaurants for 
which different demand patterns were created to better simulate these 
building types. Other nodes represent common commercial buildings 
such as banks, post offices, and schools. Demand values for individual 
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Fig. 2. Virtual city of Micropolis (Brumbelow et al., 2007). Single-family residential (green), multi-family residential (red), commercial (blue), and industrial (yellow) buildings 
shown with the hydraulic objects.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
commercial and industrial nodes were set during the development of 
Micropolis and reflect the heterogeneity in building demands (Brumbe-
low et al., 2007; Zechman, 2011). The total volume of water supplied in 
Micropolis is 4.54 ML/day. Industrial nodes are located along a central 
corridor to the east, and commercial nodes are grouped near the center 
of the city with three grouped to the west (Fig.  2). Micropolis is a 
complex WDS that when simulated with EPANET, provides rigorously 
calculated water age values.

The cost of bottled water is $0.325/L, an average established by 
the International Bottled Water Association (IBWA, 2021b). The cost 
of tap water is the sum of the tap water cost (Eq.  (9)) and sewer cost 
(Eq.  (10)), calculated using the 2023–2024 rate schedule from the city 
of Clinton, NC (Eq.  (11)).

3.2. Population modeling

Micropolis serves a population of approximately 4600 people. Data 
to describe household income distributions were developed from me-
dian household income estimates from the 2022 American community 
survey (ACS) (Bureau, 2022) for the city of Clinton. Data table S1901 
from the ACS was used to bootstrap gamma distribution parameters 
and is recreated in Table  2. A bootstrapped dataset was created by 
resampling 10,000 sets of 1000 income values. The percentage of 
households in each income bracket was multiplied by 100 and that 
number of uniformly distributed samples were drawn between the 
lower and upper bound of the income bracket (Table  2). The mean and 
variance from this bootstrapped data set were calculated and used to 
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Table 2
Income data used to bootstrap gamma distribution parameters.
 Income Percentage of population 
 $0–$10,000 7.6%  
 $10,000–$15,000 11.9%  
 $15,000–$25,000 13.3%  
 $25,000–$35,000 14.6%  
 $35,000–$50,000 12.3%  
 $50,000–$75,000 14.3%  
 $75,000–$100,000 9.3%  
 $100,000–$150,000 11.1%  
 $150,000–$200,000 2.6%  
 $200,000+ 3.0%  

build a gamma distribution (Eq.  (13)). The median income assigned 
from the gamma distribution was $38,089 and the 20th percentile 
income was $15,378. Corresponding values from the 2022 ACS for 
Clinton, NC were $38,880 and $15,000, respectively, validating income 
assignment using a gamma distribution calibrated with ACS data. 

𝐼 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎 = 0.6697, 𝑏 = 92, 027.75) (13)

3.3. Modeling scenarios

Four modeling scenarios are used to explore equity in Micropolis 
(Table  3). The Base scenario does not include prevention measures (PM) 
associated with social distancing or TWA behaviors. Other scenarios 
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Fig. 3. Demand calculated for the Base, TWA, PM, and TWA+PM scenarios across (a) 
all nodes and (b) residential nodes. Solid lines represent the mean demand and the 
shaded regions represent the standard error for 30 simulations.

model PM and TWA behaviors. Sensitivity analysis is conducted using 
the TWA+PM scenario to test the influence of the change in industrial 
demands due to social distancing, as reported in Section 4.4. All scenar-
ios were executed for 30 randomly generated seeds that were repeated 
between scenarios. The average runtime of each scenario was 3.25 h.

4. Results

4.1. Demand and water age

Four scenarios were simulated to explore changes in demand over 
the 180-day simulation period (Fig.  3). Demands for the Base case do 
not change over the simulation, reporting a 0.17% reduction in the 
average demand when comparing the first 30 days and the final 30 
days. Similarly, TWA behaviors do not significantly change system-
wide demand across the simulation, with a 0.013% increase in average 
demand between the first 30 and final 30 days for the TWA scenario. 
When social distancing is included in the simulation for the PM and 
TWA+PM Scenarios, there is a significant increase in demands (Fig. 
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Table 3
Modeling scenarios.
 Scenario Prevention measure Tap water avoidance 
 Base N N  
 TWA N Y  
 PM Y N  
 TWA+PM Y Y  

Fig. 4. Average water age at industrial, commercial, and residential nodes in the (a)
Base, (b) TWA, (c) PM, and (d) TWA+PM scenarios. Solid lines represent the mean 
water age and the shaded regions represent the standard error for 30 simulations.

3b). Agents adopt social distancing behaviors (working from home, 
dining out less, and grocery shopping less), causing residential demand 
to increase (Fig.  3a). The difference between the PM and TWA+PM 
scenarios is negligible, with a 0.17% reduction in demands for the 
TWA+PM scenario.

Water age is reported as a water quality metric for each of the four 
scenarios (Fig.  4). For the Base and TWA scenarios, water age does not 
change across the simulation (Fig.  4a, b). Only 6.6% of households 
exceeded the maximum TWA threshold of 150 h in the Base and 
TWA scenarios and 13.3% of households exceeded this threshold in 
the TWA+PM scenario (Figure SI.7). Because TWA behaviors do not 
significantly affect the volume of demand and flows, water quality is 
also not affected. In the PM and TWA+PM scenarios, residential water 
age increased as a result of the close spatial proximity of a significant 
proportion of residential nodes to industrial nodes. Industrial water 
age increased as agents adopted social distancing behaviors and indus-
trial water demands decreased. Increasing residential water age also 
increased the number of households exceeding the threshold to adopt 
TWA behaviors (Figure SI.7). Commercial water age, on the other hand, 
increased because most commercial nodes are located in the center 
of the network, and velocities increased in the pipes supplying the 
commercial sector by 200% (red box in Figure SI.8).

4.2. Tap water avoidance

The percentage of households that bought bottled water for cooking 
and drinking increased when social distancing was implemented (Fig. 
5). In the TWA scenario, the percentage of households buying bottled 
water for cooking or drinking is approximately 7.5% at the end of the 
180 day simulation (Fig.  4a). Due to water quality deterioration under 
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Fig. 5. Percentage of households that bought bottled water for drinking, cooking and hygiene (a) without social distancing (TWA) and (b) with social distancing (TWA+PM). Solid 
lines represent the mean percentage of households adopting each TWA and the shaded regions represent the standard error for 30 simulations.
the TWA+PM scenario associated with the water quality impacts of 
social distancing, the average percentage of households buying bottled 
water for drinking and cooking is 14% (Fig.  4b). Adoption of all three 
TWA behaviors increases in the TWA+PM scenario because water age 
across the residential nodes increased due to social distancing behaviors 
(Fig.  4). More households bought bottled water for drinking because the 
threshold for adoption was 130 h, which is lower than the thresholds 
for other water end uses, at 140 h for cooking and 150 h for hygiene.

4.3. Cost of water

The median cumulative cost of water, including tap water, sewer, 
and bottled water costs, for the base case is between $200 and $300 
for 75% of households (Fig.  6). The cost of water increases marginally 
when TWA behaviors are included due to existing values for water 
age causing households to buy comparatively expensive bottled water. 
Social distancing increases the cost of water for households because 
households use more water at home, increasing household expenditure 
on water. The largest increase in the median cost of water occurs when 
agents social distance and avoid tap water (TWA+PM). The additive 
effect of increased water use at residential nodes (Fig.  3b) and increased 
bottled water buying behaviors due to water quality deterioration cre-
ates an increase in water cost for a significant proportion of households. 
The maximum household cost of water increased from $400 in the Base 
scenario to nearly $1000 in the TWA+PM scenario, a 150% increase 
over the six month simulation. Median water costs also increased, rising 
from $220 in the based scenario to $300 in the TWA+PM scenario. No 
difference is observed in the cost of water for low-income (lower 20th 
percentile, Fig.  6a) and high-income (upper 80th percentile, Fig.  6b) 
households.

The median cost of water as a percentage of income (%HI) for high-
income households (Fig.  7b) was below 3% for all scenarios. More than 
75% of high-income households had %HI less than 4.6%, a threshold 
that represents one 8-h work day spent on water services, showing 
nearly universal water affordability for high-income households. For 
low-income households, however, water is unaffordable for more than 
50% of households in all scenarios. In the Base scenario, water ser-
vices are unaffordable for half of the low-income households. In all 
other scenarios, the number of low-income households facing water 
unaffordability increases, and, in the TWA+PM scenario, nearly 75% 
of low-income households face water unaffordability.

For low-, and high-income households (Fig.  7a and b, respectively), 
prevention measures and tap water avoidance alone did not increase 
the %HI significantly. However, for low-income households, preven-
tion measures and tap water avoidance combined to increase %HI to 
unaffordable levels. For nearly 75% of low-income households, the 
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%HI exceeded one 8-h day of working at minimum wage (%HI = 
4.6%), which is a commonly cited affordability threshold (Cardoso & 
Wichman, 2022). The emergent effect of increased demands due to 
the adoption of prevention measures and tap water avoidance due to 
poor water quality demonstrates the complex interactions among social 
phenomena.

4.4. Sensitivity analysis: Tap water avoidance for drinking, cooking, and 
hygiene end uses

The sensitivity of the results to tap water end use was tested through 
a set of simulations. For the simulations reported above, when agents 
choose to avoid tap water, they use bottled water for drinking, cooking, 
and hygiene. Sensitivity analysis tests results when agents use tap 
water for only one end use (drinking, cooking, or hygiene) and use 
bottled water for two other end uses. Water affordability is reported 
and compared with a simulation in which agents do not use tap water 
for any of the end uses, but use bottled water for each end use (shown 
as None in Fig.  8). The %HI for low-income households is not sensitive 
to changes in individual end uses (Fig.  8). The median value does 
not change when tap water is used for individual end uses. The only 
significant difference is a reduction in the maximum %HI observed 
when tap water is used for cooking. This is because the amount of water 
used for cooking is greater than the amount of water used for drinking 
and hygiene (Eqs. (3), (4), and (5)). When agents use tap water for 
cooking instead of buying bottled water, the cost of water decreases as 
well as the %HI.

4.5. Sensitivity analysis: Industrial water demand

The amount of demand that is exerted at industrial facilities may 
not be reduced when people are not present due to social distancing be-
haviors. For example, industries that are high water consumers, such as 
the beverage industry, may continue to exert high water demands when 
only a skeleton crew is present. Sensitivity analysis was conducted on 
the amount of demand at industrial nodes that is attributed to the 
presence of agents. This analysis tests degradation of water quality and 
the adoption of TWA behaviors when industrial water demands stay 
high during periods of social distancing. The percent of the demand that 
depends on the number of agents is varied in a set of five simulations 
(Fig.  9). Scenarios represent the percentage of industrial demand that 
is attributed to the number of agents at each node, and the remaining 
demand exerted at that facility remained constant. In the original ABM 
formulation (TWA+PM in Fig.  9), all of the demand attributed to an 
industrial node is dependent on the number of agents at that node at a 
given time step. Scenarios TWA+PM-N refer to scenarios where N% of 
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Fig. 6. The total cost of water over the 180-day simulation for (a) low-income (lower 20th percentile) and (b) high-income (upper 80th percentile) households.

Fig. 7. Water affordability, %HI, for (a) low-income (lower 20th percentile) and (b) high-income households (upper 80th percentile). Red-dashed line represents 4.6% or the %HI 
where a household must spend one 8-h day’s worth of income on water services.

Fig. 8. Water affordability, %HI, for (a) low-income (lower 20th percentile) and (b) high-income households (upper 80th percentile) for scenarios when agents use tap water (do 
not use bottled water) for drinking, cooking, and hygiene. Red-dashed line represents 4.6% or the %HI where a household must spend one 8-h day’s worth of income on water 
services.
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Fig. 9. Water affordability, %HI, for (a) low-income (lower 20th percentile) and (b) high-income households (upper 80th percentile). Scenarios represent the percentage of industrial 
demand that is attributed to the number of agents at industrial nodes. Red-dashed line represents 4.6% or the %HI where a household must spend one 8-h day’s worth of income 
on water services.
industrial node demand is affected by the number of agents at the node. 
The TWA+PM-0 scenario represents industrial buildings with no or 
negligible demand associated with agent locations. As the percentage of 
industrial demand associated with agents is reduced, the total industrial 
demand increases. This increase in industrial demand decreased water 
age at surrounding residential nodes, reducing the %HI in the system. 
The median %HI for low-income households remained above the 4.6% 
affordability threshold for increasing volume of demands at industrial 
facilities, showing a weak sensitivity of %HI on industrial demand. 
These results imply that residential water age and %HI is not solely 
driven by increases in industrial water age, and that more complex 
spatial dynamics are occurring in the network.

5. Discussion

5.1. Assessing equitable access to affordable drinking water

The cost of water as a percentage of income (%HI) is used as 
the equity metric in this research and is calculated at each house-
hold using income and the total cost of tap and bottled water. This 
approach is similar to previous research (Cardoso & Wichman, 2022; 
Onda & Tewari, 2021; Teodoro, 2018; Teodoro & Saywitz, 2020), 
but includes the cost of bottled water and does not make an implicit 
assumption on per capita water use. Previous studies used a set per 
capita volume of 50 gallons per capita per day (GPCD) (Cardoso & 
Wichman, 2022; Onda & Tewari, 2021; Teodoro, 2018; Teodoro & 
Saywitz, 2020), whereas this research calculates water use for each 
household using a bottom-up approach based on end uses. The as-
sumption of 50 GPCD represents water necessary to meet basic needs 
and may under-estimate %HI. Our approach provides a more realistic 
interpretation of household water expenditure beyond meeting basic 
needs, potentially providing a more realistic representation of water 
affordability for low-income households. Teodoro and Saywitz (2020) 
update previous work (Teodoro, 2018) and present a mean affordability 
ratio for households in the lower 20% by income, 𝐴𝑅20, of 12.42 for 
𝑛 = 399 water utilities. The 𝐴𝑅20 metric is the ratio of the basic 
water service cost to disposable household income and better represents 
household-level affordability, compared with the utilities system-level 
financial capability (Davis & Teodoro, 2014). Although not directly 
comparable, the median %HI values for low-income households are 
reported here as 4.6%–7%, which are similar to the mean 𝐴𝑅20 of 
12.42. The median %HI values would increase if they are calculated 
using disposable income instead of total household income. Cardoso 
10 
and Wichman (2022) reported that 8.4–14.2% of households exceed 
an affordability threshold of 4.5% at per capita volumes of 40–75 
GPCD. In this research, 12.5% of households exceed a threshold of 4.5% 
in the Base scenario and 25.5% of households exceeded 4.5% in the 
TWA+PM scenario. The Base scenario falls within the range reported 
by Cardoso and Wichman (2022), but the TWA+PM scenario exceeds 
the range. The increased populations above the affordability threshold 
of 4.5% is likely caused by the higher demand volumes used in this 
research and the inclusion of bottled water buying in household water 
expenditure. To our knowledge, bottled water buying has not been 
included in previous studies, yet it represents an expenditure on water 
that is deemed necessary for many households (Doria, 2010).

Calculating %HI at each household provides new insight into how 
changes in the hydraulic system, such as poor water quality, impact 
the ability of low-income households to afford water services. ABMs 
are uniquely suited to address this concern by modeling individual 
households with diverse income values representative of the target pop-
ulation. COST-ABM, developed in this research, generates household 
level metrics attributable to spatially unique households that interact 
with the physical hydraulic network, which could provide greater depth 
to national and global water distribution equity studies (Cardoso & 
Wichman, 2022; Hutton, 2012; Teodoro, 2018).

5.1.1. Limitations
Because Micropolis is a virtual city, data that would geospatially 

locate income and ethnicity are not available. The spatial intersection 
of demographic characteristics with water quality hot spots could po-
tentially lead to different equity impacts than predicted here. Spatial 
differences in income from inequitable practices such as redlining can 
lead to unpredicted spatial changes to affordability. New research is 
needed to apply COST-ABM for real-world cities, assess equity impacts, 
and validate the framework and modeling approaches using measured 
data. Other work has calculated the cost of water based on disposable 
income, and COST-ABM can be updated to use other affordability 
metrics in analysis (Teodoro, 2018).

5.2. Modeling tap water avoidance behaviors

Tap water avoidance behaviors are modeled in COST-ABM to rep-
resent that as water quality deteriorates, individuals choose to buy 
bottled water as an alternative to tap water. This research applies 
the assumption that water quality is linked to water age. Previous 
studies have made a qualitative connection between water age and 
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water quality, reporting water quality degradation with increased water 
age (Blokker et al., 2016; Machell & Boxall, 2012, 2014; USEPA, 2002). 
This framework uses thresholds on water age to represent water quality 
degradation and trigger the adoption of tap water avoidance behaviors. 
Because there is a lack of research that has quantitatively linked water 
quality thresholds or water age thresholds with bottled water buying 
behaviors, thresholds were selected using conservative engineering 
judgment. COST-ABM is a novel modeling approach to connect water 
quality with tap water avoidance behaviors for drinking water systems.

5.2.1. Limitations
New research can model water quality explicitly to capture the 

fate and transport of specific drinking water constituents, such as 
the decay of chlorine and chloramine (Ricca et al., 2019), and their 
interaction with microbes. New research is needed to fully develop 
and demonstrate models using, for example a multi-species extension 
(MSX) for EPANET, that simulate spatial and temporal changes to water 
quality constituents in a water distribution system.

While research has demonstrated that organoleptic compound for-
mation is associated with poor water quality (Doria et al., 2009; Font-
Ribera et al., 2017), further research is needed to quantitatively link 
specific water quality parameters with organoleptic compounds and 
the formation of organoleptic compounds with tap water avoidance 
behaviors. Previous work has shown that individuals make the deci-
sion to buy bottled water based on many factors including not just 
organoleptics (taste, odor, and color), but also trust in the water utility 
and risk perceptions related water quality (Anadu & Harding, 2000; 
Doria, 2010; Saylor et al., 2011). These factors have been shown to 
vary considerably with demographic groups and affect the use of tap 
water (Balazs & Ray, 2014; Doria, 2010; Fedinick et al., 2019; Gorelick 
et al., 2011; Hanna-Attisha et al., 2016; Hobson et al., 2007; Hu 
et al., 2011; Huerta-Saenz et al., 2012; Javidi & Pierce, 2018; Pierce 
& Gonzalez, 2017; Regnier et al., 2015; Schaider et al., 2019; Scherzer 
et al., 2010; VanDerslice, 2011). Future work can also include risk 
perception modeling for different demographic groups and capture tap 
water avoidance behavior decision-making.

This research modeled demands and demand changes at buildings 
as a diurnal pattern, rather than the aggregation of end uses at fixtures 
by individuals sharing a home or non-residential building. Unique 
demand patterns and changes to demands during working-from-home 
periods may be captured by considering personal end uses, or water 
consumption at fixtures specific to each individual person. For example, 
seasonal demands associated with outdoor water use are not modeled 
in the formulation presented here. Demands can change drastically 
between seasons, with major peaks in summer time demands caused 
by outdoor water use, and working-from-home scenarios could result 
in more gardening and outdoor water use. For households that worked 
from home, appliances such as dishwashers and washing machines 
could be used during working hours and would contribute unevenly to 
water use profiles. This research assumed a change in demands when 
50% of agents sharing a building work from home. Simulating personal 
end uses for agents would allow more descriptive simulation of demand 
changes. New data is needed to characterize personal end uses for 
individuals in a shared household during pandemic and post-pandemic 
periods (Vizanko et al., 2025) and relate personal beliefs around water 
uses and social distancing to changes in water demands (Berglund et al., 
2025).

Other tap water avoidance behaviors can be included in future 
research. This research assumes that COVID-19 prevention measures 
do not influence tap water avoidance behaviors. Drinking, cooking and 
teeth brushing rates may be changed when individuals practice social 
distancing behaviors, and those reactions can be included in the agent 
behaviors. The model that was formulated here assumes that consumers 
do not use tap water for drinking, cooking, and hygiene once they 
have adopted tap water avoidance behaviors. New research is needed 
to explore how tap water avoidance behaviors are abandoned and to 
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integrate those behaviors in COST-ABM. Park et al. (2023) reported 
higher intake of sugar-sweetened beverages when individuals perceive 
bottled water as safer than tap water. Park et al. (2023) also found that 
these perceptions are race and ethnicity dependent, affirming the need 
to address sociodemographic differences in future work. Other research 
can explore tap water avoidance behaviors that seek sugar-sweetened 
behaviors and assess the health effects of consuming or avoiding tap 
water.

5.3. Agent-based modeling to assess equitable access to affordable water

COST-ABM is a bottom-up framework that assesses water equity as 
the cost of water as a percent of income based on water quality and 
tap water avoidance behaviors. The dynamics that lead to inequities 
are evident in literature (Javidi & Pierce, 2018) but have not been di-
rectly measured and reported. Without research that reports individual 
household water quality sampling and tap water avoidance behaviors, 
COST-ABM is an important step in understanding and mitigating in-
equity in community water systems. COST-ABM is readily scalable to 
other hydraulic networks that represent real cities. The data required 
to apply COST-ABM to a new location include the cost of water, a 
hydraulic model of the pipe network, and income statistics, such as 
Table S1901 from the ACS.

Micropolis is a virtual application, but represents a hydraulically 
complex network with similarities to common practices seen in small 
towns, and some lessons that emerge in this research can apply gener-
ally. For example, Micropolis has a core of commercial and industrial 
nodes that represent centralized common spaces such as government 
buildings, restaurants, clinics, and schools, which reflects a common 
urban planning concept. In this application, commercial water age 
decreased despite a decrease in demand, which may be a common 
and generalizable phenomenon in cities built with a layout similar to 
Micropolis.

Previous work developed ABM approaches specifically for the vir-
tual city of Micropolis to study contamination response (Kadinski, 
Berglund et al., 2022) and social distancing (Vizanko, Kadinski, Ostfeld 
et al., 2024). This research adds a new socioeconomic layer to Mi-
cropolis that incorporates both household incomes and tap and bottled 
water cost simulation. The population of Micropolis was modeled after 
a small, rural U.S. city that has a population with below average 
income and has experienced violations of the Safe Drinking Water 
Act. Enhancing the Micropolis dataset with household income and the 
cost of water allows new analysis of equitable outcomes that can be 
included across future applications of WDS infrastructure management. 
Future work can further enhance the sociodemographic layers with 
race and ethnicity. Enhancing these datasets facilitates new analysis 
of environmental justice in decision-making for water infrastructure 
management.

5.3.1. Limitations
Each simulation of COST-ABM was executed in parallel on a 40-

core machine with an average runtime of 3.25 h. High computational 
requirements can pose a potential challenge for utilities in applying 
COST-ABM. The results presented here were executed over a 180-day 
timeline to capture changes in the transmission of COVID-19 and social 
distancing behaviors. Future work can reduce runtime by simulating a 
snapshot of social distancing and demand shifting behaviors to assess 
water quality and the cost of water at pre-determined points in a 
pandemic or unfolding hazard.

COST-ABM can be applied to explore the performance of infrastruc-
ture changes that are designed to improve water quality at hotspots 
through operational changes such as hydrant flushing or tank opti-
mization. Capital projects, such as correcting oversized pipes, adding 
pipes in areas with stagnation concerns, or adding water sources can 
be assessed using COST-ABM. Policy changes can encourage tap water 
consumption through household water filtration system rebates, tap 
water education programs, and community engagement that builds 
trust between water utilities and the community, and these mechanisms 
can be implemented in COST-ABM.



B. Vizanko et al.

S

S

S

S

Sustainable Cities and Society 130 (2025) 106517 
6. Conclusion

This research presents COST-ABM, which quantifies the equity and 
affordability impacts of COVID-19 social distancing and tap water 
avoidance behaviors. COST-ABM incorporates COVID-19 social distanc-
ing behaviors that cause spatio-temporal changes in water quality. 
Household perceptions of water quality lead to decisions to adopt tap 
water avoidance behaviors that reduce tap water demand. The cost of 
water for each household is calculated including the cost of buying 
bottled water due to poor water quality. Spatio-temporal changes in 
water quality, driven by COVID-19 social distancing, caused bottled 
water buying behavior that increased the average household cost of 
water. The combination of COVID-19 social distancing behaviors and 
tap water avoidance behaviors led to an emergent reduction in house-
hold water affordability for an illustrative case study. These findings 
have not been established in other research studies to date, though the 
modeling framework is based on dynamics that have been described 
and documented in numerous research studies. Results demonstrate 
emergence of water equity, that is, the cost of water as a percentage 
of income, under scenarios that combine social distancing and tap 
water avoidance is not equal to the sum of impacts due to individual 
scenarios of social distancing and tap water avoidance alone. Increases 
in household water cost disproportionately led to a decrease in water 
affordability for low-income households.

COST-ABM is the first to assess equity in an ABM that tightly 
couples COVID-19 transmission, social distancing, and WDS hydraulic 
performance. The ABM measures equity using the cost of water as a 
percentage of household income that is calculated at each household, 
which offers increased specificity when assessing water affordability for 
low-income households. COST-ABM can be applied in future work to 
not only assess (in)equities in WDS, but develop management strategies 
to address inequities through policy and operational changes that will 
improve water affordability for all consumers.

CRediT authorship contribution statement

Brent Vizanko: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Software, Methodology, Investigation, 
Formal analysis, Data curation. Shimon Komarovsky: Writing – review 
& editing, Validation, Software, Methodology. Avi Ostfeld: Writing 
– review & editing, Supervision, Resources, Project administration, 
Investigation, Funding acquisition, Conceptualization. Emily Zechman 
Berglund: Writing – review & editing, Writing – original draft, Super-
vision, Resources, Project administration, Methodology, Investigation, 
Funding acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests: 
The authors declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

This research was funded by the United States - Binational Science 
Foundation (BSF) and the Israeli Water Authority under project number 
143990. We would also like to thank both the City of Lakewood and 
Dryhurst et al. (2020) for providing access to data that were critical to 
the development of the models presented in this research.
12 
Appendix A. Process scheduling details

The following descriptions for Steps H1–H5 and D1–D5 are adapted 
from Vizanko, Kadinski, Ostfeld et al. (2024).

Step H1. Agents move between residential and non-residential nodes. 
Agents move between nodes based on predefined node ca-
pacities and node type requirements. Agents are assigned to 
move to and from non-residential nodes based on an hourly 
total capacity at each non-residential node.

Step H2. Agents update COVID-19 status indicators. Agents update 
COVID-19 status indicators, which represent the number of 
hours an agent spends in the exposed, infected, severe, and 
symptomatic stages (𝑡𝑒𝑥𝑝, 𝑡𝑖𝑛𝑓 , 𝑡𝑠𝑒𝑣, and 𝑡𝑠𝑦𝑚𝑝, respectively).

Step H3. Agents transmit COVID-19. Infected agents expose susceptible 
agents when they occupy the same node. When an infected 
agent moves to a new node, up to 10 susceptible agents at the 
new node are exposed based on the node’s exposure rate (𝑒𝑟𝑒𝑠
for residential nodes 𝑒𝑛𝑟 for non-residential nodes in Table 
B.1).

Step H4. Agents update mass media exposure. Agents receive informa-
tion from TV and radio based on probabilistic estimates that 
they use each form of media at each hour of the day (Rogers 
& Sorensen, 1991; Shafiee & Zechman, 2013) (Table SI.2). 
The mass media exposure (𝐶𝑚𝑒𝑑) is a binary number that is 
changed from 0 to 1 once an agent receives information about 
COVID-19 at any time step, based on probabilistic behaviors 
to use radio and TV.

Step H5. Agents exert water demand. The hourly demand at each node 
is calculated based on the number of agents at each node, as 
follows. 

𝐵𝑑′𝑡,𝑁 =
𝐾𝑁

𝐾𝑁,𝑐𝑎𝑝
× 𝐵𝑑𝑡,𝑁 (A.1)

where 𝐵𝑑′𝑡,𝑁  is the new demand for node 𝑁 at time 𝑡, 𝐾𝑁
is the number of agents at node 𝑁 , 𝐾𝑁,𝑐𝑎𝑝 is the capacity of 
node 𝑁 , and 𝐵𝑑𝑡,𝑁  is the base demand.

The following steps are completed every 24 h:

tep D1. Agents update COVID-19 status. Agents update COVID-19 
status state variables (𝑆, 𝑆𝑠𝑦𝑚𝑝, and 𝑆𝑖𝑛𝑓 ) based on their 
progression through disease stages. Once the time in a stage 
exceeds an agent’s threshold for that stage (e.g., 𝑡𝑒𝑥𝑝 > 𝜏𝑒𝑥𝑝, 
Table  B.1), the agent updates its COVID-19 status (e.g., 𝑆 =
𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑).

tep D2. Agents update personal experience with COVID-19. Once an 
agent enters the infectious stage (𝑆 = 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑), the agent 
updates the personal COVID-19 status (𝐶𝑝𝑒𝑟) from ‘‘no’’ (value 
of 1), to ‘‘doctor confirmed and am still infected’’ (value of 
9) (Vizanko, Kadinski, Ostfeld et al., 2024).

tep D3. Agents update friends and family COVID-19 status. An agent 
updates the friends and family COVID-19 status (𝐶𝑓𝑓 ) when 
peer agent enters the infectious stage. The value (𝐶𝑓𝑓 ) can 
increase up to 7 to represent the number of peers in an 
agent’s network that are infected. A value of seven corre-
sponds to survey responses that the person is ‘‘very much 
affected’’ by friends or family testing positive or dying from 
COVID-19 (Vizanko, Kadinski, Ostfeld et al., 2024).

tep D4. Agents update decision to adopt prevention measures. BBN 
models are applied to calculate the probability of adopting 
each prevention measures based on mass media exposure, 
personal COVID-19 status, and friends and family COVID-19 
status (𝐶𝑚𝑒𝑑 , 𝐶𝑓𝑓 , and 𝐶𝑝𝑒𝑟, respectively). Prevention mea-
sures include working from home, dining out less, grocery 
shopping less, and wearing PPE and bottled water buying 
behaviors are drinking bottled water, cooking with bottled 
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Table B.1
Agent parameters are used to model exposure to COVID-19, communication, and mobility in the network. 
LN(𝑥, 𝑦) represents a log-normal distribution with mean 𝑥 and standard deviation 𝑦.
 Parameter Symbol Value  
 Residential exposure rate 𝑒𝑟𝑒𝑠 0.05a  
 Non-residential exposure rate 𝑒𝑛𝑟 0.01a  
 Probability of listening to radio 𝑃𝑅 Table SI.2  
 Probability of watching TV 𝑃𝑇𝑉 Table SI.2  
 Work node 𝑁𝑤𝑜𝑟𝑘 All industrial nodes  
 Home node 𝑁ℎ𝑜𝑚𝑒 All residential nodes  
 Exposed stage threshold (days) 𝜏𝑒𝑥𝑝 ∼LN(4.5, 1.5)a  
 Symptomatic stage thresholds (days) 𝜏𝑠𝑦𝑚𝑝 ∼LN(1.1, 0.9) (to severe stage)a

∼LN(8.0, 2.0) (to recovered stage)a
 

 Infected stage threshold (days) 𝜏𝑖𝑛𝑓 𝑡𝑠𝑦𝑚𝑝 + 𝑡𝑠𝑒𝑣 + 𝑡𝑐𝑟𝑖𝑡  
 Severe stage thresholds (days) 𝜏𝑠𝑒𝑣 ∼LN(1.5, 2.0) (to critical stage)a

∼LN(18.1, 6.3) (to recovered stage)a
 

 Critical stage thresholds (days) 𝜏𝑐𝑟𝑖𝑡 ∼LN(10.7, 4.8) (to dead stage)a
∼LN(18.1, 6.3) (to recovered stage)a

 

a Values reported by Kerr et al. (2021).
Table B.2
Agent state variables.
 State variable Symbol Value  
 COVID-19 status 𝑆 [susceptible, exposed, infected, recovered, dead] 
 Symptomatic status 𝑆𝑠𝑦𝑚𝑝 [Symptomatic, asymptomatic]  
 Infected status 𝑆𝑖𝑛𝑓 [mild, severe, critical]  
 Personal COVID-19 status (BBN input) 𝐶𝑝𝑒𝑟 ∈ [1, 9]  
 Friends and family COVID-19 status (BBN input) 𝐶𝑓𝑓 ∈ [1, 2, 3, 4, 5, 6, 7]  
 Mass media exposure (BBN input) 𝐶𝑚𝑒𝑑 ∈ {0, 1}  
 Time in exposed stage (days) 𝑡𝑒𝑥𝑝  
 Time in symptomatic stage (days) 𝑡𝑠𝑦𝑚𝑝  
 Time in infected stage (days) 𝑡𝑖𝑛𝑓  
 Time in severe stage (days) 𝑡𝑠𝑒𝑣  
 Time in critical stage (days) 𝑡𝑐𝑟𝑖𝑡  
 WFH decision 𝐷𝑊𝐹𝐻 [Not WFH, WFH]  
 Dine out less decision 𝐷𝑑𝑖𝑛𝑒 [Dine out, dine out less]  
 Grocery shop less decision 𝐷𝑠ℎ𝑜𝑝 [Grocery shop, grocery shop less]  
 PPE decision 𝐷𝑃𝑃𝐸 [Wear PPE, not wear PPE]  
water and using bottled water for hygiene. Refer to previous 
work for more information on prevention measures (Vizanko, 
Kadinski, Cummings et al., 2024; Vizanko, Kadinski, Ostfeld 
et al., 2024).

tep D5. Agents update demand patterns. Agents that select to work 
from home, dine out less, or grocery shop less update their de-
mand patterns from a typical diurnal pattern to a pattern that 
expresses demands uniformly across daylight hours (standard 
and COVID-19 demand patterns in Table SI.1).

Appendix B. State variables and parameters

See Tables  B.1 and B.2.

Appendix C. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.scs.2025.106517.

Data availability

All data, models, and code that support the findings of this study 
are available from the corresponding author upon reasonable request. 
The ABM is available through Zenodo.
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