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Abstract The inherent uncertainty in water demand poses significant challenges to water distribution
systems' (WDSs) efficiency and quality. This study introduces a model predictive control framework tailored
for real‐time optimal operation of WDSs under uncertain demand and maximum water age constraints to ensure
water quality requirements. The methodology presented utilizes a scenario‐based energy‐cost optimization
approach to account for demand uncertainties. As water age is unmeasurable, a model linearly related to some
measured/observed network variables (e.g., flows, water levels, etc.) is proposed to infer water age values.
Then, a scenario‐based mixed‐integer linear programming problem is formulated and solved repeatedly online
to adjust operational strategies for minimizing energy operation costs while satisfying water age constraints.
The outcome of this model is a feasible operation scheme for all demand scenarios, providing a cost‐effective
decision that meets water age limits. The proposed model is tested on a real‐world‐based test case and validated
through a series of sensitivity analyses.

Plain Language Summary The uncertainty in water demandmakes it hard to maintain the efficiency
and quality of water distribution systems. This study presents a control framework designed for the real‐time
optimal operation of these systems, taking into account unpredictable demand and water age requirements to
ensure water quality. The method uses scenario‐based optimization to handle demand uncertainties. Since water
age can't be directly measured, the study proposes a model that estimates it based on certain observable variables
in the network. A scenario‐based mixed‐integer linear programming problem is then repeatedly solved online to
adjust operational strategies, aiming to minimize costs while meeting water age requirements. This model
provides a practical operation plan for all demand scenarios, offering a cost‐effective solution that adheres to
water age limits. The proposed model is tested on a real‐world scenario and validated through various sensitivity
analyses.

1. Introduction
Water distribution systems (WDSs) are critical infrastructures that deliver potable water to residential, com-
mercial, and industrial consumers. Ensuring a continuous supply of high‐quality water requires operators to
confront multiple challenges, among the most pressing of which are uncertainties in water demand, adherence to
regulatory requirements, and cost‐effective resource allocation. Indeed, water demand is inherently stochastic,
influenced by factors such as diurnal consumption patterns, weather conditions, and consumer behavior. These
fluctuations, coupled with stringent water quality regulations, complicate the task of maintaining system effi-
ciency and reliability. A primary water quality concern relates to the control of water age, which is defined as the
time water spends within the distribution network before reaching end‐users (Dandy et al., 2013). Water age is a
critical indicator of overall water quality because it is directly tied to the decay of disinfectant residuals and the
formation of disinfection by‐products in the network. Consequently, prolonged water age can result in water that
does not meet stipulated safety standards, making effective control strategies for water age an essential
component of modern WDS management (Mala‐Jetmarova et al., 2017).

Traditional approaches to WDS operation and management often rely on rule‐based methods or deterministic
optimization models that do not explicitly consider the stochastic nature of water demand. While these methods
can be straightforward to implement, they may yield suboptimal solutions when demand deviates from expected
values, thereby undermining both efficiency and water quality goals. Model‐based predictive methods have
emerged as a promising alternative for handling the complexities inherent in large‐scale water networks. Among
such methods, Model Predictive Control (MPC) has attracted significant attention due to its capacity to address
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multivariable control problems and manage constraints in a systematic manner (Camacho & Bordons, 2007). By
predicting the future states of the system, such as tank levels, flow rates, and pressures, MPC can proactively
determine control actions (for pumps, valves, and other actuators) that balance cost, system reliability, and quality
considerations (Salomons & Housh, 2020b; Tang et al., 2014). Since a future time horizon is considered for
dynamic optimization, it benefits both constraint satisfaction and cost minimization in a dynamic way. For
instance, when it is known (from the statistical point of view) that the demand will considerably decrease in the
future, the pump will decrease the water supply in advance. The amount of the pumping reduction is optimized
based on the model‐based prediction, such that the water age will not be higher than its upper bond. To minimize
the operation cost, we would like to pump more water in the off‐peak tariff period. For this purpose, the dynamic
optimization will empty the tanks in advance. Otherwise, the water level will be over its upper bound.

An especially powerful feature of MPC is its ability to incorporate water quality constraints directly into the
decision‐making process. For instance, constraints on water age or disinfectant residual can be formulated as part
of the MPC optimization, ensuring that operational decisions meet both quantity and quality criteria (Cherchi
et al., 2015). This approach contrasts with conventional strategies in which water quality is treated separately or
secondarily, often through post‐processing checks rather than real‐time control adjustments. Furthermore, many
regulatory standards for WDSs emphasize not just meeting average quality measures but also ensuring that water
quality remains within acceptable limits even under adverse or fluctuating conditions. Consequently, the flexi-
bility nature of MPC make it an attractive tool for system operators seeking to fulfill regulatory obligations
without incurring excessive operational costs.

One challenge, however, is that MPC, in its basic (deterministic) form, may not be fully equipped to handle high
degrees of uncertainty in demand and water quality parameters. Demand uncertainty is particularly critical, as
deviations in forecasted consumption can lead to suboptimal operation, such as overfilling or underfilling storage
tanks, increased pumping costs, or degraded water quality due to longer residence times. To address these issues,
researchers have proposed scenario‐based MPC frameworks (Bernardini & Bemporad, 2009; Lucia et al., 2013;
Maiworm et al., 2015; Xu et al., 2022). Under this paradigm, demand uncertainty is modeled by generating a finite
set of possible demand profiles (or scenarios) over the prediction horizon. These scenarios capture a range of
possible future demand patterns, reflecting the uncertainty inherent in water consumption. While these scenarios
include normal demand variations, it should be noted that extreme conditions, such as partial system malfunction,
fires, etc., are not part of this framework. In such cases, the objective of system operators focuses on supplying as
much of the demand and prioritizing specific zones in the system rather than energy cost savings. Our approach
evaluates the performance of the system by considering multiple demand scenarios simultaneously, leading to
robust operations.

Within each scenario, the model tracks both hydraulic and water quality variables, including water age. Through a
mixed‐integer linear programming (MILP) or similar optimization formulation, scenario‐based MPC ensures that
the selected control actions are robust, that is, they maintain acceptable performance across the range of demand
scenarios considered (Creaco et al., 2019). Wytock et al. (2017) demonstrated the effectiveness of scenario‐based
robust MPC in dynamic energy management applications, providing a foundation for extending similar meth-
odologies to the water sector. By addressing uncertainties proactively, scenario‐based MPC can balance multiple
objectives, such as minimizing operational costs, maintaining adequate pressure, and controlling water age below
regulatory thresholds.

The concept of water age itself has long been recognized as an essential surrogate for water quality in distribution
systems. Rossman and Boulos (1996) suggested detailing numerical methods for modeling water quality in
complex pipe networks, focusing on the transport and decay of contaminants as well as the importance of water
age in capturing disinfectant residual behavior. In their approach and in widely used hydraulic solvers such as
EPANET (Rossman et al., 2020), water age is typically treated as a conservative tracer starting at zero at each
source, then increasing over time as it travels through pipes and mixes at junctions and tanks. This simulation
framework has made it possible for subsequent studies to incorporate water age into optimization and control
algorithms.

Indeed, recent research has explored the simultaneous minimization of water age and other system performance
metrics. Korder et al. (2024) proposed an optimization approach aimed at reducing both water age and pressure
through strategic placement and operation of pressure reducing valves. Such integrative approaches highlight the
value of considering multiple objectives (e.g., pressure, energy cost, and water age) in a single optimization
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framework, especially given that reducing excessive pressure may also mitigate leakage but could inadvertently
increase residence times in certain parts of the network. Similar trade‐offs arise in many real‐world networks,
necessitating sophisticated modeling and control techniques.

Beyond demand uncertainties, variability in water quality parameters, including initial disinfectant concentra-
tions, decay kinetics, and by‐product formation rates, can further complicate operational decisions. Basupi and
Kapelan (2015) highlighted the importance of robust system design for future demand scenarios by stressing
resilience and flexibility. Such principles can be extended to operational control, where real‐time adjustments
must consider not only shifting demands but also the evolving chemical and biological processes in the water.
Roach et al. (2016) compared robust optimization with info‐gap methods in water resource management, offering
insights into how different uncertainties can be addressed depending on the complexity of the system and the
tolerance for risk. Ultimately, the goal is to ensure reliability and service quality even under the broadest plausible
range of operating conditions.

EPANET (Rossman et al., 2020) and other hydraulic solvers have proven invaluable in capturing water age
dynamics. EPANET's conservative tracer model assumes complete mixing in tanks, which can sometimes un-
derestimate local water age gradients but remains a practical compromise for real‐time or near‐real‐time com-
putations. As water moves from sources to consumers, the age accumulates, and any deviation from the assumed
demand schedule affects the predicted water age distribution (Braun et al., 2020). When demand is higher than
expected, turnover in the network occurs more rapidly, potentially lowering water age, whereas lower‐than‐
expected demand can lead to extended residence times. Hence, the uncertainty in demand manifests directly
as uncertainty in the water age. By employing a scenario‐based approach, operators can envision both “high‐
demand” and “low‐demand” situations as well as intermediate conditions, creating an envelope within which
water age values fluctuate. The control algorithm then identifies a robust operational strategy (e.g., pump
schedules and valve settings) that maintains water quality within acceptable limits across all scenarios. This
robust approach contrasts with deterministic optimization, which might only target an expected demand profile
and fail to account for variability. In real‐world operations, such flexibility is key for compliance with water
quality regulations, especially when consumer demand exhibits sudden changes or seasonal shifts.

Building on these foundational insights, the present study proposes a scenario‐based Linear Model Predictive
Control (LMPC) framework that explicitly addresses demand uncertainty while controlling water age within
acceptable bounds. The framework begins with the development of a linear model that relates observable states
(e.g., tank levels, pressures, and flow rates) to water age, serving as an inferential sensor. In real time, this sensor
is updated based on actual measurements, allowing water age to be predicted over a future horizon (e.g., 24–
48 hr). Scenarios capturing different plausible demand profiles is then constructed, and a scenario‐based Mixed‐
Integer Linear Programming problem is formulated. The solution to this problem yields control actions (pump
switches, valve settings, etc.) that minimize operational costs subject to water age constraints for each scenario.
The linear structure of the model ensures computational tractability, making it suitable for time‐critical appli-
cations where decisions must be made with minimal delay.

To validate the proposed scenario‐based LMPC, this study applies it to the C‐Town benchmark network (Ostfeld
et al., 2012). By leveraging EPANET's hydraulic and water quality simulation capabilities, as a surrogate to the
real WDS, the study demonstrates how real‐time adjustments in pumping schedules and valve manipulations can
keep water age within acceptable thresholds across multiple demand scenarios. The results confirm that the
methodology not only reduces operational costs but also achieves robust adherence to water quality standards,
thus underscoring its potential for deployment in full‐scale water utilities.

In summary, the integration of MPC with scenario‐based optimization offers a sophisticated and robust frame-
work for real‐time WDS operation under uncertain demand and water quality conditions. Water age serves as a
critical surrogate for water quality, linking disinfectant residual decay and by‐product formation with system
hydraulics. By proactively addressing the stochastic nature of demand, scenario‐based LMPC ensures that water
age remains within acceptable limits, even under shifting consumption patterns. This paper's contribution lies in
unifying these concepts into a single, linearized control structure and validating the approach through a
comprehensive real‐world case study. Such methodology paves the way for broader industry adoption, as water
utilities increasingly seek data‐driven, cost‐effective solutions that guarantee safe and reliable service to
consumers.
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The remainder of this paper is organized as follows. The methodology section details the water age estimation
modeling and the proposed MPC framework. The case study and results section presents the application of the
framework to the C‐Town network and discusses its outcomes. Finally, the conclusion section summarizes our
findings and suggests directions for future research.

2. Methodology
2.1. Water Age Estimation

Water quality models, including water age, are based on the principles of conservation of mass coupled with
reaction kinetics (Rossman & Boulos, 1996; Rossman et al., 1993). Both principles are governed by nonlinear
equations and require the hydraulics to be solved first. With the aim of preserving a linear model for the purpose of
a real‐time application, we propose a multivariate regression model for water age estimation, Equation 1.

waj = BTX (1)

where,waj is the water age at junction j for a given time, X is a vector of observations of state variables (e.g., water
levels at tanks, flows, etc.) associated with junction j, and B is a vector of parameters containing the regression
coefficients. In this paper, a junction can also be a tank. A least‐squares method is employed to determine the
optimal coefficient values by minimizing the sum of squared residuals. That is, for each junction of interest, we
formulate the quadratic optimization problem depicted in Equations 2 and 3.

min∑(wasimt − waestt )
2 ∀ t ∈T (2)

s.t.,

waestt =∑ bpxf,t ∀ t ∈T,p∈P (3)

where, wasimt is the water age which is provided by simulation using EPANET at time t, waestt is the estimated
water age at time t (for the given junction), T is the time span of the optimization period (t ∈ T), bp is the p‐th
regression coefficient (b ∈ B), xp,t is the p‐th observation variable at time t, and P is the set of regression co-
efficients (p ∈ P). It should be noted that this formulation does not restrict the estimated water age to be positive
to avoid over‐constraining the problem. This is because we are interested in the higher values of the water age, not
around zero. At some junctions, as will be shown for the test case, the water age time series has sharp peaks and,
solving problem Equation 3, large residuals will remain at the peak points. Therefore, for these junctions we add a
second stage of a weighted least‐squares optimization. The time based weights, kt, are calculated using the first
stage results, Equation 4.

kt =
⃒
w⃒asimt − waestt

⃒
⃒ (4)

Then, the first stage objective function with Equation 2 is replaced as by Equation 5.

min∑ kt(wasimt − waestt )
2 ∀ t ∈ T (5)

Noteworthy is that kt is calculated with the results of the first stage while the error in the water age in Equation 5,
wasimt − waestt , is calculated during the second stage. Although the two‐stage optimization problem is nonlinear,
the number of regression parameters is relatively small. As will be seen in our case study, less than 10 regression
terms are usually enough for water age estimation. As a result, we obtain Equation 3 as a model to estimate water
age at junctions in the network, based on the online observation of the variables X. This makes it possible to design
a model‐based optimal control of WDSs in which a direct measurement of water age is not available.
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2.2. Formulation of the Scenario‐Based Linear MPC

In this study, the aim of optimal operation is defined, under demand uncertainty, as cost minimization of WDS,
that is, to minimize the energy costs of the pump stations and meanwhile restrict the water age in a user‐defined
range by controlling pumps and valves. We generate several demand scenarios to describe the demand uncer-
tainty. Therefore, the objective function, Equation 6, comprises of two terms: the first is the energy operating cost
of the system and the second is a penalty term to minimize the water age deviation in the system from the required
values.

min ∑
n∈SCN

∑
t∈T
∑
s∈S

∑
c∈Cs

un
s,c,t · qs,c · es,c · ECt ·Δt +∑

j∈J
∑
t∈T

M ·Δwan
j,t (6)

The first term loops over the set of demand scenarios (n ∈ SCN), time (t ∈ T), pump stations (s ∈ S), and pump
combinations within each pump station (c ∈ Cs). T is the user‐defined prediction horizon. un

s,c,t is a decision
variable determining whether a specific pump combination is operating or not. qs,c is the flow of pumping
combination c of station s, es,c is its specific energy, ECt is the electricity cost (known tariff from the energy
market) at time t, and Δt is the time step duration. Thus, the operation cost is a linear function of the decision
variable u which can be integer or continuous, expressed as follows:

u ∈ {0,1} ∀ t ∈ T int (7)

0 ≤ u ≤ 1 t ∈T − T int (8)

∑
t∈T

uns,c,t ≤ 1 ∀ s ∈ S,c ∈ Cs,n ∈ SCN (9)

This decision variable u, in its integer form, Equation 7, represents whether a specific pumping combination is
operated (u = 1) or not (u = 0) during time step t. While in its continuous form, Equation 8, it represents the
fraction of time in which the pumping combination is operating during time step t. The set of time steps, in which
u as an integer variable is T int. The size of T int is referred to as the binarization level (Salomons & Housh, 2020a).
A binarization level of one means that only in the first‐time step the decision variables are integer while for the
rest of the time steps they are continuous. The aim of introducing the binarization level is to relax the MILP
problem to reduce the computational burden. The regionalization of the binarization level approach is that, in the
MPC loop, only the first‐time step's decisions are implemented to the system, as described above. Thus, during a
single time step, uns,c,t is limited by one (see Equation 9), since only one pumping combination can be operated in a
station at any given time.

The second term of the objective function Equation 6 aims to minimize the water age deviation, Δwa in the system
from the upper bound valueswamax, by imposing a penalty parameterM on the deviation. This is over the set of all
junctions, j being evaluated ( j ∈ J). Here, Δwa is a positive decision variable which will be zero if the water age
at the junction is within the valid range, that is:

wan
j,t ≤ wamaxj + Δwan

j,t (10)

where wanj,t is the water age in junction j at time t for scenario n and wamaxj is the upper bound of the water age at
junction j. The formulation of Equations 6 and 11 leads to a soft‐constraint for the water age to avoid infeasibility.

As described above in Equation 3, the water age is a linear function of the observation variables, briefly
expressed as:

wan
j,t = f (wan

j,t− 1,q(u
n
t ),v

n
t ) ∀ j ∈ J,n ∈ SCN (11)

where wan
j,t− 1 is the water age at the junction in the previous time step to describe the water age dynamics. q(un

t )

denotes the flows from pumps corresponding to the pumping combinations selected by the optimization, and vnt
are the volumes of the water tanks. The mass balance of the tanks is given in Equation 12.
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vnr,t = vnr,t− 1 + ∑
s∈Sin,r

∑
c∈Cs

uns,c,t · qs,c ·Δt − ∑
s∈Sout,r

∑
c∈Cs

un
s,c,t · qs,c ·Δt

− dn
r,t ∀ r ∈R, t ∈ T,n∈ SCN (12)

where vnr,t and vnr,t− 1 are the water volumes of tank r in the demand scenario n
during the current and previous time steps, respectively. The second and third
terms in Equation 12 are the volumes of water pumped into and out of the
tank, where Sin,r and Sout,r are the set of stations pumping water in and out of
the tank, respectively. The last term in Equation 12 is the demand associated
with the pressure zone of the tank r. The water volume in the tanks is con-
strained as follows

Vminr,t ≤ vnr,t ≤ Vmaxr,t ∀ r ∈R, t ∈ T,n∈ SCN (13)

vnr,0 = Vinit
r ∀ r ∈R,n∈ SCN (14)

vnr,tmax ≥Vr,tmax ∀ r ∈R,n∈ SCN (15)

where Vminr,t and Vmaxr,t are the volume upper and lower bound of tank r in time t, respectively. Finally, to describe
the demand uncertainty, we define several demand scenarios by demand multipliers. For the first time step
(t = 0), we assume for all scenarios the same value of the decision variables, Equation 16, since this is a viable
decision to be implemented for the pump stations.

un
s,c,0 = u1s,c,0 ∀ s∈ S,c∈Cs,n∈ SCN (16)

As a result, our scenario‐based mixed‐integer linear MPC is formulated by Equations 6–16. The structure of its
realization is shown in Figure 1. The WDS to be controlled consists of pump stations and a water distribution
network (WDS). In our case study, the WDS is simulated by EPANET. In the MPC, at each time point, the
observation variables X will be measured from the WDS and supplied to the water age estimator. The estimated
water ageWA is then used in the solution of the scenario‐basedMILP problem. Its resultU will be supplied for the
optimal operation of the pump stations.

2.3. Case Study and Results

The developed approach is applied on a portion of the real‐world based C‐Town network (Salomons, 2025), as
shown in Figure 2a (Ostfeld et al., 2012). The network consists of 186 junctions, 210 pipes (of about 30 Km in
length), two tanks (T1 and T5, with volumes of 5,000 and 500 cubic meters respectively), and two pumping
stations (S1 and S4 with a maximum capacity of about 685 and 215 m3/hr, respectively) in which there are five
pumps in total.

As a first step, the water age, according to Equations 2 and 3, is required to be estimated. As representative nodes
of the network, Tanks T1, T5, and junction J1056 are selected for the water age estimation. The logic behind this
selection is that most of the water flows through the two tanks, and J1056 is a junction in the middle of the main
pressure zone supplied by S1 and T1. An EPANET simulation with a duration of 1,000 hr is performed for the
water age to be stabilized and less affected by the initial condition of the network. We consider this state as the
initial state for testing our approach. The observation variables (x ∈ X) used for the estimation of the water age for
Tank 1, Tank 5 and J1056 are given in Table 1, along with the resulted regression coefficients (b ∈ B),
respectively.

The quality of the estimation of the water age for T1 and T5 is shown in Figure 3. It can be seen that the water age
prediction is quite good with some deviations of 5–10 hr. The RMSEs for T1 and T5 are 4.7 and 3.5 hr,
respectively. However, it should be noted that the accuracy of the prediction is relevant only for the “peaks,” or
high values, of the water age as this estimation is used for the maximum water age constraint. As will be seen in
the MPC optimization results, the water prediction accuracy is well fitted for this purpose. However, applying the

Figure 1. Structure of scenario‐based model predictive control.
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procedure for the estimation of the water age at junction J1056 is not satisfactory, as shown in Figure 4a. It can be
seen that the procedure fails to estimate the high peaks of the water age. As described in the water age estimation
section, for such cases we add a second stage for the estimation algorithm (see Equations 4 and 5). The results of
the second stage are shown in Figure 4b, indicating a significant improvement at the peak points. It is noteworthy
that, although the peaks in the water age values are now estimated accurately, the accuracy of the low values of the
water age is limited. As mentioned above, we are concerned about the range or the limit of the water age esti-
mation and the error at low levels of water age has no impact on our closed‐loop control. For example, if the water
age maximum levels allowed are in the range of 30 hr, then inaccuracy in estimating low water age levels are not
meaningful.

Based on the water age model, the scenario‐based linear MPC is now used for real‐time optimization. The flow
and specific energy of the combinations of the pump stations, qS,C and eS,C respectively, are given in Table 2.

Figure 2. C‐Town (a) and the test part (b) networks.

Table 1
Water Age Model Estimation Results

Observation variable Tank 1 Tank 5 Junction 1,056

S1 flow (LPS) − 0.01609 − 0.0168 − 0.0456

Tank 1 level (m) 0.34517 0.0703 0.7907

S4 flow (LPS) 0.04721 − 0.0273 0.0762

Tank 1 previous water age (hr) 0.92365 – –

DMA 1 demand (LPS) 0.03362 0.0160 0.0380

Tank 5 previous water age (hr) – 0.9701 –

Tank 5 level (m) − 0.23300 0.4952 –

DMA 5 demand (LPS) − 0.05407 0.0052 –

Junction 1,056 previous water age (hr) – – 0.8936
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These input values were derived from the operation history of the pumping stations. For the energy cost, we
assume that the electricity tariff, EC, has a three‐tier structure: on‐peak, mid‐peak, and off‐peak with values as
1.0676, 0.6182, and 0.3407 NIS/kWh (NIS—New Israeli Shekel), respectively. In addition, the duration of the
peaks needs to be defined. We assume that during weekdays, Sunday through Thursday, the mid‐peak hours are
6–8, on‐peak 14–21, and the rest is off‐peak. On Friday, the mid‐peak hours are 16–20, and the rest is off‐peak (no
on‐peak on Friday). On Saturday, the on‐peak hours are 17–19, mid‐peak 19–21, and the rest is off‐peak,
respectively.

The base optimization run is performed over 1 week. That is, the run consists of 168 optimization steps, each with
a prediction horizon T = 48 hr with a time step Δt = 1 hr. The binarization level, T int, is set to 5 hours. The
constraint (upper bound) on the water age is set as 50 hr for the two tanks (T1 and T5), and 40 hr at junction J1056.
It should be noted that, since the estimation of the water age is not fully accurate, we use a safety level (i.e., a
setback) to ensure the real water age stays inside the specified range. Thus, we define a safety level of at least
10 hr.

The penalty parameter in the objective function (see Equation 6) for deviations from the water age constraints,M,
is set to 100 NIS per hour of deviation. The lower bound of the tank volumes is 1,000 and 50 m3 and their upper

Figure 3. Water age estimation for (a) Tank 1, and (b) Tank 5.
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bound is 4,700 and 450 m3 for tanks 1 and 5, respectively. To describe the demand uncertainty, we use two
demand scenarios which are set as 5% below and above the expected demand. It should be noted that future
expected demands are not known and need to be forecasted. However, in this study, we assume that any forecast
error will be included in the scenario‐based 5% spread.

The initial water age at the tanks and junction J1056 is set to 20 hr which we achieved from simulation with
EPANET. Each run of the optimization provides an optimal operation profile for the pump stations over the
prediction horizon. The decision for the first hour will be realized in the real WDS. For the case study, the
EPANETmodel is used as the real WDSwith the actual demands, to simulate the state of the system. At the end of
the first time step, the values of the state variables will be used as the initial condition for the next optimiza-
tion run.

All optimization runs were performed with the Gurobi solver (Gurobi Optimization, 2014) and the OpenSolver
framework (Mason, 2012). The problem is a MILP and the default solver settings were used, with a stop criteria

Figure 4. Water age estimation for junction J1056, (a) first stage, and (b) second stage.
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gap of 0.5%. OpenSolver is an Excel VBA add‐in that extends Excel's built‐in
Solver with more powerful free and commercial solvers. The resulting opti-
mization problem has 1,248 decision variables and 874 constraints. The re-
sults of the 1‐week optimization runs are shown in Figures 5 and 6 (the “base‐
run,” see the sensitivity analysis below). Figure 5 shows the resulting water
volumes in the two tanks and the water flows at the pumping stations by
realizing the optimized operation profile. It can be seen that, as expected, the
tank volumes are within the lower and upper bounds. Furthermore, from the
economic point of view, they follow a daily pattern which corresponds to the
energy tariff change during the day, that is, the tanks are filled during the off‐
peak tariff hours and drained during the mid‐peak and on‐peak periods.
Similarly, the pump stations pump water into the tanks, Station 1 to Tank 1
and Station 4 to Tank 5, with higher flows during the off‐peak hours and
lower flows during the on‐peak periods.

The resulting water age trajectories, as calculated by EPANET, for Tank 1,
Tank 5, and junction J1056 are given in Figures 6a and 6c, respectively. As

can be seen, the water age is within the specified range, that is, there are no violations of the water age upper
bound. The total operating cost for the week, for this base run is 7,027 NIS. It should be noted that the current
operating cost of this system is unavailable. However, in the next section, we compare different scenarios to the
base run, and show the effect of demand variability on the operating costs and the water age.

Table 2
Flow and Specific Energy of the Combinations of the Pump Stations

Pump station Combination (#) Flow (lps) Specific energy (kW /m3)

S1 1 116 0.1

2 100 0.14

3 94 0.12

4 180 0.15

5 182 0.13

6 170 0.16

7 227 0.17

S4 1 35 0.32

2 33 0.3

3 45 0.4

Figure 5. Tank volume and station flow trajectories by the scenario‐based model predictive control.
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For the real‐time operation of a water distribution system, the computation time for solving the optimization
problem is essential since the update of the decision variables should be made available within the defined
sampling time Δt = 1 hr. Therefore, a run‐time experiment with multiple optimization runs is performed by
using a personal computer (Lenovo twelfth Gen Intel® Core™ i7‐1260P 2.1 GHz with 32 GB of RAM) and its
result is presented in Figure 7. As can be seen, the maximum run‐time of the optimization procedure does not
exceed 45 s, which is sufficient for the real‐time control, specifically when using a time‐step of 1 hour.

2.4. Sensitivity Analysis

To investigate the impact of different demand scenarios, a set of sensitivity analysis (SA) runs were performed,
which are summarized in Table 3. First, in SA1, we use the true demands (Ostfeld et al., 2012) instead of the two
demand scenarios in the base run (BR). It yields a slightly lower cost of 7,002 NIS, which shows a reduction of

Figure 6. Water age trajectories by the scenario‐based model predictive control (EPANET calculated). (a) Tank 1 WA, (b) Tank 5 WA, (c) Junction 1056 WA.
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0.4% from the BR. Although the cost reduction is not significant, a lower cost
is expected due to the decreased uncertainty in the demand.

In SA2–SA4, we use different degrees of demand scenarios, that is, 3%, 8%,
and 10% below and above the expected demand (compared to the 5% of the
BR). The resulting tank volume andwater age trajectories for Tank 1 are given
in Figures 8 and 9, respectively. As expected, it can be seen in Table 3 that the
total cost of operation slightly increases with the increase of the uncertainty
level (with a small exception of the 8% spread). From Figure 8 it can be seen
that, as the uncertainty increases, the use of the water volume increases as well
so as to be “prepared” for possible increases in the demand. Consequently, as
the water volume in the tank increases, the water age increases as well, with
small violations of the 50 hr water age constraint, as shown in Figure 9.

Furthermore, the effect of the maximum volume of Tank 1 is examined.
Specifically, we define its maximum volume as 2,000, 2,300, and 2,500 m3,
denoted as SA5–SA7, respectively, compared to the maximum volume of
4,700 m3 in the BR. The optimal tank volume and water age trajectories in
Tank 1 are given in Figures 10 and 11, respectively. It can be seen that the effect
of a smaller tank on the total operating cost is significant, that is, as the water

volume decreases, the operating costs increase, as shown in Table 3. It should be noted that the minimum volume
for all the cases remained at 1,000m3. The reduction of the operating costswith the increase of the available storage
is expected as more pumping can be shifted for the on‐peak to the off‐peak hours and for water to be stored in the
tank for on‐peak use. From the water age perspective, the water turnover volume ratio of the tank increases for the
larger volumes (i.e., improving the mixing). For example, in the base run, the water level reaches 3,000 m3 and
drops to the minimum level of 1,000 m3, which is a turnover of about two‐thirds of the total volume. Contarary,
when themaximumvolume is set at 2,000m3, the turnover is only half. Consequently, thewater age is lower for the
larger volumes, as shown in Figure 11. It should be noted that for SA5 (tank maximum volume as 2,000 m3) the
water age slightly exceeds the upper bound. This is because in our problem formulation, a soft‐constraint for the
water age is used to avoid the issue of infeasibility.

In SA8, a case of a smaller tank (the upper bound of Tank 1 as 2,000 m3) without the water age constraints is
studied. The results show that the effects are minor in this test case. The total operating cost is reduced with less
than 1% (see Table 3), the water volume is similar (see Figure 12), and Tank1 water age is slightly higher, as
expected, since no constraint is posed on water age, as shown in Figure 13.

Finally, in SA9, we examine the robustness of the proposed algorithm, with the Tank 1 maximum volume of
2,000 m3 (i.e., a considerably smaller tank) as in SA5, in the case where the actual demand is increased by 5%. The

Figure 7. Run‐time cumulative probability.

Table 3
Sensitivity Analysis Results

Run Change from base run Total cost (NIS) Change from BR (%)

BR None—base run (demand scenarios spread of 5%) 7,027 –

SA1 Using true demands 7,002 − 0.36

SA2 Demand scenarios spread of 3% 6,996 − 0.44

SA3 Demand scenarios spread of 8% 6,986 − 0.58

SA4 Demand scenarios spread of 10% 7,097 0.99

SA5 Maximum volume for Tank 1 of 2,000 m3 7,402 5.33

SA6 Maximum volume for Tank 1 of 2,300 m3 7,145 1.67

SA7 Maximum volume for Tank 1 of 2,500 m3 7,059 0.46

SA8 Demand scenarios spread of 5%, Tank 1 maximum volume of 2,000 m3 and no WA constraint 7,387 5.12

SA9 Demand scenarios spread of 5%, Tank 1 maximum volume of 2,000 m3 and increase “real”
demand 5%

8,056 14.64
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SALOMONS ET AL. 12 of 18

 19447973, 2025, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038587 by T

echnion-Israel Institution O
f, W

iley O
nline L

ibrary on [21/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



optimization results show that, as expected, higher demands require additional pumping, thus the operating costs
increased by 8.8% (see Table 3 for SA5 and SA9). Figure 14 shows thewater age at the two tanks. It can be seen that
the water age with the higher demands are slightly lower, this is due to the increased pumping and rapid water
change in the tanks.

Figure 8. Water volume trajectories in Tank 1 in different demand scenarios (SA1–SA4).

Figure 9. Water age trajectories at Tank 1 in different demand scenarios (SA1–SA4).
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Figure 10. Tank 1 water volume trajectories for SA5–SA7 (BR: Base Run).

Figure 11. Tank 1 water age trajectories for SA5–SA7.
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3. Conclusions
This study proposed a multivariable linear regression model to predict water age across nodes within a water
distribution network based on measurable variables like tank levels and water flows. We use a first‐ and second‐
stage optimization scheme to refine the estimates, particularly for high water age peaks. Second, a scenario‐based
MPC framework was developed to operateWDSs with demand uncertainty. The formulatedMPC solves a mixed‐
integer programming problem in real time, minimizing the operating costs according to the electricity tariff and
mostly satisfying the specified water age constraints. The results of a case study demonstrated that the system will
indeed maintain water age within the acceptable limits while minimizing operational costs and meeting various
constraints such as tank volumes. Furthermore, a sensitivity analysis demonstrated the robustness of the proposed
control strategy for the test case under various demand scenarios and tank volume constraints, indicating only
minor deviations from the expected performance even under unsuitable conditions. Using the proposed approach,
the overall operational performance was effectively managed, and its flexibility in response to different scenarios
was confirmed, illustrating its potential for cost efficiency and system adaptability under demand uncertainties
and variable operational conditions.

Figure 12. Tank water volume trajectories for SA8 (WA: Water Age). (a) Tank 1 volume, (b) Tank 5 volume.
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Since the test case used in this study was based on a simulated, real‐world‐inspired water distribution system,
future work should include validating the proposed methodology on actual operational networks. Testing the
approach on a real‐world network would provide deeper insights into the practical applicability of the approach.
Another direction would be the extension of the framework to larger and more complex networks that include
multiple critical junctions with water age constraints. This may require enhancements in both the water age
estimation model and the MPC formulation to ensure scalability and computational efficiency. Developing a
systematic methodology for identifying water‐age‐critical nodes based on topological, hydraulic, or demand‐
based criteria would also strengthen the framework's applicability across diverse networks. In addition, an
automated procedure for selecting an appropriate model complexity of water age (e.g., the number and type of
variables in the regression model) could be explored using machine learning or adaptive modeling techniques.
This would allow the estimation model to balance accuracy and computational load depending on a given system's

Figure 13. Tank water age trajectories for SA8 (WA: Water Age). (a) Tank 1 WA, (b) Tank 5 WA.
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specific needs. Lastly, the economic impacts of different tariff structures and the inclusion of renewable energy
sources (e.g., solar‐powered pumps) could be evaluated to further improve cost efficiency and sustainability.

Data Availability Statement
The data of the test case network used in this research have been uploaded to the FAIR‐compliant Zenodo online
repository (Salomons, 2025).
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