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Introduction

The Battle of the Water Demand Forecasting (BWDF) is part of the
Battle of Water Networks, a series of competitions related to the
design and operation of water distribution networks (WDNs) that

dates back to the 1980s (Walski et al. 1987). Since the beginning,
the competition’s goal has been to attract groups with different back-
grounds, such as academic researchers, engineers and technicians
from water utilities, and consultants, to propose strategies for solv-
ing complex problems concerning WDNs under various conditions.
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The BWDF, organized in the context of the 3rd International
Water Distribution Systems Analysis and Computing and Control
in the Water Industry (WDSA-CCWI) joint conference held in
Ferrara (Italy) in 2024, is aimed at comparing the effectiveness of
methods for the short-term forecast of urban water demand consid-
ering a set of district metered areas (DMAs) in a real WDN. This
challenge attracted 31 teams from different backgrounds worldwide
who participated in the competition. The approaches applied, and
the results obtained, by each team were presented during the ple-
nary session of the WDSA-CCWI 2024 conference dedicated to the
BWDF. In this plenary session, the winning team was announced,
along with second and third place.

After introducing the BWDF problem and summarizing the
approaches adopted by the 31 participating teams, this paper com-
pares the results submitted by each team and provides considera-
tions and insights for future research.

Background

Population growth, urbanization, and climate change have been
raising people’s awareness about the impact of human activities
on the environment and the available natural sources, such as water
resources (Daniel et al. 2018; Jeandron et al. 2019; Attallah et al.
2023). In this context, sustainable management of water systems
is crucial to avoid water shortage or the depletion of available
sources. The operational and strategic decisions made by drinking
water utilities and authorities can benefit from reliable and accu-
rate forecasts of water demand—i.e., the sum of all the types of
water consumption within WDNs, spacing from residential to
nonresidential activities (Mazzoni et al. 2024)—which is the main
driver of these systems (Hussien et al. 2016; Grespan et al. 2022;
Li and Song 2023). Water demand and, strictly related, the total
net inflow—i.e., the total amount of water entering a WDN, in-
cluding all types of water consumption and leakages—can vary
significantly due to factors affecting user behavior, spacing from
weather to socio-economic conditions or the type of day (Zounemat-
Kermani et al. 2020), making its forecast a challenging task.

Water demand forecasting can be performed at different time
scales (Bakker et al. 2013; Zounemat-Kermani et al. 2020; Hao
et al. 2024), i.e., with different time resolutions (the time steps at
which water demand forecasts are generated) and forecast horizons
(the forecasted time intervals). In general, water demand forecast-
ing models can be classified as long-term and short-term models,
according to the levels of planning in relation to which they are
used (Donkor et al. 2014; Ghalehkhondabi et al. 2017; Pacchin
et al. 2019). On the one hand, long-term models are typically used
by water utilities in decision-making processes for urban water
management in the distant future (e.g., upcoming years or decades),
such as those related to design, water pricing, resource allocation,
or water use restrictions (Herrera et al. 2010; Babel and Shinde
2011; Donkor et al. 2014). Long-term models generally provide
demand forecasts on a monthly or yearly basis with a time horizon
ranging from 1 to 10 years, and they are used for offline simulations
to evaluate different planning options. On the other hand, short-
term models allow drinking water utilities to estimate water de-
mand and its pattern over a limited time horizon. Short-term models
are generally used for management or real-time control purposes
(Odan and Ribeiro Reis 2012), e.g., to appropriately regulate
pumps, valves, and other network elements (Kley-Holsteg and Ziel
2020). Short-term models typically provide water demand forecasts
over time horizons ranging from 1 day to 1 month with a time step
ranging from daily to subhourly (Arandia et al. 2016; Bakker et al.
2013; Msiza et al. 2008; Shabani et al. 2018).

The BWDF focuses on short-term forecasting. With specific
reference to daily and weekly forecast horizons, various methods
have been proposed and developed in the scientific literature in re-
cent years (Tian et al. 2016), and promising results have been ob-
tained (Guo et al. 2018). However, available methods have been
generally tested on specific case studies, and comparing their per-
formance is not straightforward (Ghalehkhondabi et al. 2017).

Forecasting Methods

Approaches for the generation of water demand forecasts can be
classified into soft computing methods and time series analysis
methods (Pacchin et al. 2019), whereas approaches including the
combination of two or many water demand forecasting techniques
are defined as hybrid methods (Niknam et al. 2022).

Soft computing methods for water demand forecasting are based
on the use of emerging data-driven tools that produce approximate
solutions to high-complexity problems (de Souza Groppo et al.
2019). In greater detail, these data-driven approaches can forecast
water demand based on historical demand data, possibly coupled
with data related to exogenous variables, i.e., the potential drivers
of water demand (spacing from weather to socio-economic factors,
or related to the calendar). Clearly, selecting the most relevant
exogenous variables can contribute to improving model accuracy
while limiting its dimensionality (Hao et al. 2024).

Among soft computing methods, artificial neural networks
(ANNs) are extensively used for forecasting purposes in various
domains and in many occasions are shown to have excellent pre-
dictive ability (Ghalehkhondabi et al. 2017). The ability of ANNs
to model nonlinear dynamics is a key advantage over other methods
(Hao et al. 2024). By mimicking the function of biological neurons,
ANNs can provide an accurate prediction in the face of little or no
prior knowledge of the problem. This performance can be signifi-
cantly enhanced after adapting the model to the specific problem.
Among ANNs—and, specifically, deep learning methods—
approaches relying on long-short-term memory networks have
emerged as promising tools in the field of urban water demand
(Hao et al. 2024), better suited for time series forecasts compared to
traditional ANNs due to their ability to preserve previous informa-
tion in the learning process (Mu et al. 2020). Despite their advan-
tages, ANN-based models may face issues related to their lack of
explainability, limitations in extrapolating data, and the need for
long time series of data for training and testing (Zounemat-
Kermani et al. 2020; Niknam et al. 2022).

Other soft computing (OSC) methods for short-term water de-
mand forecasting are available beyond ANNs. For example, among
the several machine learning models, models based on decision
trees—such as support vector machines and random forests—
emerge as the most promising in the literature on water demand
forecasting (Niknam et al. 2022). In addition, fuzzy logic reprodu-
ces the human way of thinking in computational form and is gen-
erally applied to overcome data uncertainty and the statistical
assumptions of linearity and time invariance (Palomero et al. 2022).

Time series analysis (TS) methods are based on the analysis
of historical data, which is conducted by decomposing their main
statistical elements, such as level, trend, seasonality, and noise
(Alvisi et al. 2007). Although TS models struggle to capture non-
linear relationships amongst data, a clear advantage of TS for water
demand forecasting lies in their great explainability, which cannot
be overlooked in the decision-making process (Niknam et al.
2022). Two main categories can be identified among TS methods:
univariate TS and TS with exogenous variables (Anele et al. 2017).
On the one hand, univariate TS methods forecast future water
demand based on past observations and associated error terms.
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Examples of univariate TS forecasting include exponential smooth-
ing and the autoregressive integrated moving average (ARIMA)
class of models. These methods may not be the most accurate
alternative when variations in weather conditions are likely to in-
fluence the underlying determinants of water demand (Anele et al.
2017). On the other hand, TS forecasting models with exogenous
variables can generate forecasts based on the relationship be-
tween water demand and its drivers by including these variables
(e.g., weather factors, socio-economic factors, or information about
the type of day) as inputs. Notable examples of TS regression mod-
els are multiple linear and nonlinear regression and ARIMA with
exogenous variables (Anele et al. 2017). Overall, the quality and
reliability of the exogenous variable data to input in the TS methods
for water demand forecasting are crucial as far as prediction accu-
racy is concerned (Sardinha-Lourenço et al. 2018).

Finally, hybrid methods combine two or more different models
to take advantage of the strengths of each technique, with the aim of
outperforming the different methods when used separately (Niknam
et al. 2022). In the case of the BWDF, every possible combination
of forecasting methods (even if belonging to the same category,
e.g., two ANN models) is considered as a hybrid method.

Open Questions and Aim of the Challenge

Based on the literature, a large set of tools for water demand fore-
casting is currently available. However, the selection of the most
suitable technique to adopt can be hard (Herrera et al. 2010), since
it generally depends on the focus of a given water demand forecast-
ing problem, e.g., prediction of the average or peak demand (Niknam
et al. 2022). Therefore, the results may differ based on the methods
used, making it difficult to identify a single method as the overall
best (Donkor et al. 2014; Ghalehkhondabi et al. 2017). In general,
companies and water utilities prefer interpretable (i.e., transparent)
methods instead of complex ones (e.g., soft computing methods)
when similar predictive capabilities are obtained by both methods.
This is because interpretable methods are more straightforward to
include in the decision-making process for a range of WDN oper-
ations (Niknam et al. 2022). However, the increasing number of soft
computing methods tested in the field of water demand forecasting—
including ANN-based models (e.g., Mu et al. 2020; Menapace et al.
2021; Zanfei et al. 2022b), but also the application of OSC techniques
(e.g., Liu et al. 2023)—is opening a promising research direction
(Guo et al. 2018; Xenochristou and Kapelan 2020). Furthermore,
available methods have been mostly trained and validated on specific
case studies and considering a variety of different metrics and indica-
tors, often resulting in outputs hard to cross-compare (Zounemat-
Kermani et al. 2020). As a result, water demand forecasting remains

a research problem, leaving room for improvement (de Souza Groppo
et al. 2019).

Considering the above, the BWDF aims to compare the effec-
tiveness of different methods for the short-term urban water de-
mand forecasting using a benchmark data set from the northeast
of Italy. This data set is based on supervisory control and data
acquisition (SCADA) measurements and mass-balance calcula-
tions for a set of real DMAs, i.e., delimited zones within a
WDN where boundaries are defined and the quantities of water
entering and leaving the area are metered (Pesantez et al. 2020;
Sharma et al. 2022). This paper summarizes the main approaches
and solutions proposed in the context of the BWDF, along with
the key outcomes, and addresses future research directions in the
context of short-term water demand forecasting. The rest of the
paper is structured as follows: (1) the BWDF problem, data, and
assessment criteria are described in the Problem Formulation sec-
tion; (2) an overview of the forecasting methods presented by
participating teams is provided in the Competing Methods sec-
tion; (3) the main results performance of different methods is out-
lined in the Results and Discussion section; and (4) key findings
and future research directions are discussed in the Conclusions
section.

Problem Formulation

Scope and Materials

The goal of the BWDF is to develop new models—or to apply one
or many existing models—to perform water demand forecasting
on a weekly time horizon. More precisely, the BWDF is focused
on forecasting hourly water demand of a real WDN located in the
northeast of Italy. The WDN includes 10 DMAs that have different
sizes, features, and average water demands. Participants of the
BWDF were required to forecast the net inflow for all 10 DMAs,
here assumed to represent water demand.

The main features of each DMA are summarized in Table 1,
which includes area characteristics, the number of users supplied,
and the average net inflow.

The water utility managing the DMAs provided hourly net in-
flow time series Qnet (L/s) for each DMA from January 1, 2021, to
March 31, 2023. Flow data were acquired by means of the water
utility SCADA systems. Net inflow time series include water con-
sumption and leakage and are obtained through a water balance as
shown in Eq. (1):

Qnet ¼
Xnin

i¼1

Qin;i −
Xnout

j¼1

Qout;j ð1Þ

Table 1. DMA characteristics

DMA Area characteristics
Number of users
supplied (approx.)

Average net
inflow (L=s)a

1 Hospital district 200 8.2
2 Residential district in the countryside 500 9.6
3 Residential district in the countryside 600 4.2
4 Suburban residential/commercial district 2,100 32.9
5 Residential/commercial district close to the city center 800 78.7
6 Suburban district including sport facilities and office buildings 1,100 8.4
7 Residential district close to the city center 3,200 25.2
8 City center district 2,900 21.2
9 Commercial/industrial district close to the port 400 21.1
10 Commercial/industrial district close to the port 800 26.1
aAssessed with reference to the period between January 1, 2021, and March 31, 2023.
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in which Qin;i = flow rate entering the DMA through the ith inlet
point (i ¼ 1; 2; : : : nin, nin being the total number of inflow points),
whereas Qout;j is the flow rate outgoing from the DMA through the
jth outlet point (j ¼ 1; 2; : : : nout, nout being the total number of
outflow points). DMAs with storage facilities were not considered
in the BWDF. Moreover, net inflow data were not processed.
Therefore, they may include gaps related to SCADA system mal-
functioning and other data collection/transmission issues. In par-
ticular, missing data constitute about 5% of the data. The small
amount of missing data was believed to be acceptable for the pur-
poses of the BWDF.

In addition to the historical net inflow data, weather data such as air
temperature, rainfall depth, air humidity, and wind speed observed at a
weather station located within the case-study WDN were made avail-
able from January 1, 2021, to March 31, 2023. Participants were al-
lowed to use weather data as exogenous variables (although it was not
a requirement). Finally, calendar information was provided as water
demand patterns may sometimes deviate from those typically ob-
served during working days (Mazzoni et al. 2024). Calendar informa-
tion provided to BWDF participants included Sundays, holidays, and
local-event days along with all time changes from Central European
Time to Central European Summer Time and vice-versa. All historical
and calendar data are available in the Supplemental Materials.

In the context of the BWDF, teams were asked to determinis-
tically forecast the hourly net inflow of the 10 DMAs over four
distinct weeks of the period from January 1, 2021, and March 31,
2023 (hereinafter referred to as evaluation weeks, details of which
are shown in Table 2). Forecasts were asked, in turn, for each evalu-
ation week, providing: (1) only historical data (i.e., demand and
weather data from week January 1, 2021, to the day preceding the
evaluation week considered); and (2) weather forecasts for the
evaluation week considered (i.e., weather data observed during
each evaluation week, excluding demand data for prior evaluation
weeks, i.e., problem solutions), so that participants could use this
information in their forecasting models. As far as weather data are
concerned, these were provided under the assumption that they
represent a perfect forecast of future weather conditions. In a real-
world scenario, these perfect weather forecasts would be replaced
by other methods, such as numerical weather predictions (e.g., Tian
et al. 2016). Overall, the above step-by-step data release was con-
ducted with the aim of reproducing a real time process of water
demand forecasting, in which only historical data and the weather
forecasts for the period concerned are available. Specifically,
• Teams were first provided with historical demand and weather

data from week 1/2021 to week 29/2022 to set up the forecasting
models. In addition, weather forecasts for week 30/2022 were
made available, and teams were asked to forecast the hourly net
inflow time series of the 10 DMAs for week 30/2022 (evalu-
ation weekW1) and to submit their solution by the first deadline
(see Fig. S1a and Table 2).

• After the first deadline, historical demand and weather data from
week 31/2022 to week 43/2022 were made available along with
weather forecasts for week 44/2022, and teams were asked to
forecast the hourly net inflow time series of the 10 DMAs
for week 44/2022 (evaluation weekW2) and to submit their sol-
ution by the second deadline (see Fig. S1b and Table 2).

• After the second deadline, historical demand and weather data
for the period between week 45/2022 and week 2/2023 were
then made available along with weather forecasts for week 3/
2023, and teams were asked to forecast the hourly net inflow
time series of the 10 DMAs for week 3/2023 (evaluation week
W3) and to submit their solution by the third deadline (see
Fig. S1c and Table 2).

• After the third deadline, historical demand and weather data for
the period between week 4/2023 and week 9/2023 were finally
made available along with weather forecasts for week 10/2023,
and teams were asked to forecast the hourly net inflow time
series of the 10 DMAs for week 10/2023 (evaluation week
W4) and to submit their solution by the last deadline (see
Fig. S1d and Table 2).

Assessment Criteria

The performance of each water demand forecasting model is evalu-
ated by considering its accuracy in forecasting the hourly water
demand time series in relation to (1) the first day of each evaluation
week (i.e., the first 24 h of the weekly time window), given that
WDN operations—such as pumping control strategies—are typi-
cally programmed on a daily basis over the next 24 h (Alvisi
et al. 2007); and (2) the subsequent period of each evaluation
week, since the different behaviors observable on a weekly
scale—e.g., between weekdays and holidays—may still affect
WDN operational controls on a longer term (Bakker et al. 2013;
Sardinha-Lourenço et al. 2018).

From an operational standpoint, model performance is assessed
by considering the forecasted net inflow time series of each DMA d
(d ¼ 1; : : : ;D, where D ¼ 10) and for each evaluation week w
(w ¼ 1; : : : ;W where W ¼ 4). Three performance indicators
(PIs) were used in the evaluation:
1. the mean absolute error (MAE) for the 24 h making up to the

initial day of each evaluation week w [i.e., PI1dw, as shown
in Eq. (2)];

2. the MAE for the period between the second and the final day of
each evaluation week [i.e., PI2dw, as shown in Eq. (3)]; and

3. the maximum absolute error for the 24 h making up to the initial
day of each evaluation week w [i.e., PI3dw, as shown in Eq. (4)]

PI1dw ¼ 1

24

X24

h¼1

jOd;w;h − Fd;w;hj ð2Þ

PI2dw ¼ 1

144

X168

h¼25

jOd;w;h − Fd;w;hj ð3Þ

PI3dw ¼ maxfjOd;w;1 − Fd;w;1j; jOd;w;2 − Fd;w;2j; : : : ; jOd;w;24 − Fd;w;24jg ð4Þ
In Eqs. (2)–(4), Od;w;h = observed net inflow in DMA d at hour h of evaluation week w (h ¼ 1; : : : ; 168); and Fd;w;h = respective fore-

casted value, i.e., forecasted net inflow. It is worth noting that performance indicators PI1, PI2, and PI3 are expressed in the same units as the
target variable (i.e., L/s).

Table 2. Evaluation weeks

Evaluation week Week number Initial–final day

W1 30/2022 July 25–31, 2022
W2 44/2022 October 31–November 6, 2022
W3 3/2023 January 16–22, 2023
W4 10/2023 March 6–12, 2023
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For each DMA d, evaluation week w, and performance indicator
PIdjw (j ¼ 1; : : : ; J, being J ¼ 3), the solutions provided by nt
water demand forecasting models were ranked by (1) sorting water
demand forecasting models in ascending order based on the value
of performance indicator PIdjw ; and (2) assigning a value rdjw
(rdjw ¼ 1; : : : ; nt) based on the position of each model in the sorted
list (so that rdjw ¼ 1 in the case of the model providing the lowest
PIdjw value and r

d
jw

¼ nt in the case of the model providing the high-
est PIdjw value). The overall performance of each forecasting model
was then assessed by calculating the average rank value R, namely,
the sum of the rank values rdjw obtained for each DMA, week, and
performance indicator divided by the product of the total number of
DMAs (D), weeks (W), and performance indicators (J), as shown
in Eq. (5):

R ¼
P

D
d¼1

P
W
w¼1

P
J
j¼1 r

d
jw

D · W · J
ð5Þ

Based on Eqs. (2)–(5), it emerges that, the lower R, the lower
PIdjw , and, therefore, the higher the performance of a given forecast-
ing model.

Considering the above, the most effective water demand
forecasting model (i.e., the winning solution of the challenge)
was the model with the lowest average rank value R. The aver-
age rank value, R, is not necessarily an integer number and can
range between a minimum possible value, Rmin ¼ 1, in in the
ideal case of a team placing in the first position for all PIs,
DMAs, and evaluation weeks, and a maximum potential value,
Rmax ¼ 31, in the case of a team consistently placing in the last
position.

The missed submission deadline of a generic solution, associ-
ated with one week and with one DMA, resulted in the highest rank
being assigned to the team for that week and for that DMA.

Competing Methods

A total of nt ¼ 31 teams were involved in the BWDF, each pro-
posing a water demand forecasting method (WDFM) to address
the BWDF challenge. Details about each of the nt methods (from
now on denoted as fM1;M2;M3; : : : ;M30;M31g) are available
in the single contributions of the participating teams, which are
gathered in a special volume dedicated to the conference (Alvisi
et al. 2024). The references to the individual contributions are avail-
able in Table 3, where the top-10 teams are sorted based on ranking
position, whereas teams placed from the 11th to the 31st position
are sorted in alphabetical order. Table 3 also summarizes WDFMs’
main features, based on which a clustering analysis is conducted to
outline the main characteristics of the approaches—highlighting
similarities and dissimilarities among different methods—and mak-
ing an initial and qualitative discrimination before focusing on the
quantitative results brought by the methods. More specifically,
WDFM clustering is conducted based on two major features:
(1) forecasting-method type; and (2) input data exploited.

As far as the forecasting-method type is concerned, the vast ma-
jority of WDFM proposed (i.e., 30 methods out of 31, 97%) use
soft computing approaches to perform water demand forecasting,
optimize forecasting parameters, or select the best solution from
different tools. Among soft computing-based methods, ANNs
emerge as the most adopted technique, a component of nearly 70%
of methods (i.e., 21). In greater detail, among ANNs, deep learning
methods such as long-short-term memory networks are mainly
used (M1, M8, M10, M13, M14, M15, M17, M18, M19, M22,

M24, M26, and M29), confirming the increase in the application
of these soft computing approaches in the field of urban water de-
mand forecasting (Mu et al. 2020; Hao et al. 2024). Conversely, a
more limited number of methods (48%, i.e., 15 methods) make use
of OSC techniques, such as gradient boosting (M2, M3, M4, M8,
M11, and M22), regression trees (M7, M28), support vector regres-
sion (M8, M31) or random forests (M6, M20, M21, M22, M24, and
M27). Besides relying on soft computing-based models, about 26%
of WDFMs (i.e., eight methods) also include TS-analysis methods
to increase model robustness and provide a more affordable water
demand forecast. In some cases (e.g., M1, M8), the adopted method
based on TS analysis is the naive method (i.e., a method producing
water demand forecasts for a given time of a given day and using
the data observed at the same time of the same day in a given num-
ber of previous weeks). In other cases, authors considered autore-
gressive models (M8, M22, and M28) or pattern-based methods
(M6). TS analysis techniques and, particularly, generalized autor-
egressive moving average models, are used as the only forecast
strategy in the single case of WDFM developed without including
AI tools (M16). Overall, hybrid methods including a combination
of different models cover about 42% of the proposed approaches (i.
e., 13=31 WDFMs). More specifically, some hybrid methods in-
clude the application of different approaches for water demand
forecast in relation to different DMAs and evaluation weeks,
whereas other methods are based on the application of different
approaches to the same DMA, thus providing an ensemble of fore-
cast, which in some way could be useful to take into account un-
certainty related to the forecast itself, even though at the very end a
deterministic forecast is provided given the very nature of the
indicators proposed within the framework of the Battle. In contrast
with hybrid approaches, methods based on a single technique re-
present the remaining 58%. In particular, approaches based on a
single ANNmodel represent 36% of the total (i.e., 11=31WDFMs),
those based on a single OSC technique represent 19% of the total
(i.e., 6=31 WDFMs), and the residual 3% of the models is exclu-
sively based on TS analysis (i.e., 1=31 WDFMs).

As far as input-data type is concerned, WDFM clustering re-
veals that all methods perform water demand forecasting by mak-
ing use of historical net inflow data coupled with other types of
data, such as weather data or information about the type of each
day of the forecasting horizon (i.e., calendar data). In about 74%
of cases (i.e., 23 methods), water demand forecasting is con-
ducted by exploiting all these kinds of data, whereas 16% of
WDFM (i.e., five methods) do not rely on weather data and only
10% (i.e., three methods) do not consider calendar data. This
analysis reveals that (1) in the majority of cases, water demand
forecasting is conducted by considering not only the historical
water demand data but also weather forecasts (i.e., weather data)
and information about day type (i.e., calendar data), if available;
and (2) calendar data are exploited in more than 90% of cases,
suggesting the general need of considering information on day
type when dealing with water demand forecasting (due to con-
siderably different behaviors in terms of water demand through-
out the week).

Finally, to complete the analysis, the following additional
aspects are highlighted:
• Almost all the teams dealt with the presence of net inflow data

gaps before the application of the forecast models. As men-
tioned in the previous section, net inflow data were not post-
processed and showed gaps related to other data collection or
transmission issues, as usually happens with real-world data
(Zanfei et al. 2022a). Teams applied different approaches to
perform data imputation, such as interpolation, historical
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Table 3. Main features of the water demand forecasting methods (WFDM) presented

WDFM
Ranking
position Reference Model type

Input data Data
preprocessing

Method
calibration

Probabilistic
approach

Code
languageHID CD WD

M1 1 Kley-Holsteg et al. (2024) Hybrid (ANN, TS) Yes Yes T, R, H Yes Local — Hybrid (Python, R)
M2 2 Zanutto et al. (2024) Hybrid (ANN, OSC, TS) Yes Yes T, R, H, W Yes Multiple — Python
M3 3 Bakhshipour et al. (2024) Hybrid (ANN, OSC, TS) Yes Yes — Yes Local — Python
M4 4 Groß and Hans (2024) OSC Yes Yes T, R, H, W Yes Multiple — Python
M5 5 Gabriele et al. (2024) Hybrid (ANN) Yes Yes T, R, H, W Yes Local Yes Hybrid (MATLAB, Fortran)
M6 6 Creaco et al. (2024) Hybrid (OSC, TS) Yes Yes T, R, H, W Yes Local — Hybrid (Python, MATLAB)
M7 7 Pagano et al. (2024) OSC Yes Yes — Yes Local — Python
M8 8 Ferreira et al. (2024) Hybrid (ANN, OSC, TS) Yes Yes T, R, H, W Yes Local — Python
M9 9 Ramachandran et al. (2024) ANN Yes Yes T Yes Local — Python
M10 10 Wunsch et al. (2024) ANN Yes Yes T, R Yes Local Yes Python
M11 >10 Arsova et al. (2024) OSC Yes Yes — Yes Local — Python
M12 >10 Ayyash et al. (2024) ANN Yes Yes T, R, H, W Yes Local — Python
M13 >10 Boloukasli Ahmadgourabi et al. (2024) ANN Yes Yes T, R, H, W Yes Local — Python
M14 >10 Brentan et al. (2024) ANN Yes Yes T, H Yes Local — Hybrid (Python, MATLAB)
M15 >10 Coy et al. (2024) ANN Yes Yes T, H, W Yes Local — Python
M16 >10 Gamboa-Medina and Campos (2024) TS Yes Yes — — Local Yes R
M17 >10 Geranmehr et al. (2024) ANN Yes Yes T, R, H, W Yes Global — Python
M18 >10 Iglesias-Rey et al. (2024) Hybrid (ANN) Yes — T, R, H, W Yes Local — Other (SAS Viya)
M19 >10 Jahangir and Quilty (2024) Hybrid (ANN) Yes — T, R, H, W Yes Multiple — Python
M20 >10 Kossieris et al. (2024) (adapted from) OSC Yes Yes T, R Yes Global — R
M21 >10 Kulaczkowski and Lee (2024) OSC Yes Yes T, R, H, W Yes Local — R
M22 >10 Perelman et al. (2024) Hybrid (ANN, OSC, TS) Yes Yes T, R, H, W Yes Local — Python
M23 >10 Pesantez et al. (2024) ANN Yes Yes T, R, H, W Yes Global — MATLAB
M24 >10 Que et al. (2024) Hybrid (ANN, OSC) Yes Yes T, R, H ,W Yes Global — Python
M25 >10 Reynoso-Meza and Carreño-Alvarado (2024) Hybrid (ANN, OSC) Yes Yes T, R, H, W Yes Local — MATLAB
M26 >10 Salem and Abokifa (2024) ANN Yes Yes T, R, H, W Yes Local — Python
M27 >10 Sinske et al. (2024) Hybrid (OSC) Yes Yes — Yes Local — Hybrid (Python, VBA)
M28 >10 Ulusoy et al. (2024) Hybrid (OSC, TS) Yes Yes T, R, H, W Yes Local — Other (Julia)
M29 >10 Wang et al. (2024) ANN Yes Yes T, R Yes Local — Hybrid (Python, MATLAB)
M30 >10 Yao et al. (2024) ANN Yes — T, R Yes Local — Python
M31 >10 Yu et al. (2024) OSC Yes Yes T Yes Local — MATLAB

Note: ANN = artificial neural networks; OSC = other soft computing; TS = time series analysis; HID = historical inflow data; CD = calendar data; WD = weather data; T = air temperature; R = rainfall depth; H = air
humidity; and W = wind speed.
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statistical values, moving average, K-nearest neighbors, neural
networks, or random forest.

• In most cases (nearly 80%, i.e., 24=31 WDFMs), models were
locally calibrated; i.e., water demand forecasting parameters
were individually obtained for each DMA. Conversely, a global
calibration was performed considering all DMAs grouped to-
gether in about 13% of cases (i.e., 4=31WDFMs). Only models
M2, M4, and M19 were parametrized at multiple spatial levels,
and the solution that led to the highest forecast accuracy was
finally selected.

• Despite the deterministic nature of the BWDF, a limited number
of teams (i.e., 3) included a probabilistic component in their
method. In greater detail, model conditional processors, probability
functions, and copulas were considered to account for the un-
certain nature of water demand.

• The majority of the WDFMs (55%) were developed by using the
Python programming language, followed by MATLAB (10%),
R (10%), a combination of those (19%), or other languages (6%).
This finding aligns with Python’s popularity in scientific com-
puting and data analysis due to its flexibility and transferability
(Ryzhkov et al. 2024).

Results and Discussion

The forecasts provided by the 31 teams are compared to the ob-
served net inflow data and the results analyzed at three different
levels, namely, (1) a general comparison between observed and
forecasted time series; (2) the analysis of PIs values; and (3) the
obtainment of challenge ranking and the discussion of the perfor-
mance of different WDFMs. Overall, there was a high level of par-
ticipation amongst teams. Only a single team (i.e., M25) did not
submit their solution for only a single evaluation week (i.e., W2).
Based on the BWDF rules, team M25 was assigned to the last po-
sition for evaluation week W2.

In addition to the 31 WDFMs, the naive method was considered
as a benchmark. The naive method—defined in the literature as the
“mean” model (Gelazanskas and Gamage 2015; Gagliardi et al.
2017)—performs weekly water demand forecasting based on the
mean values μ ¼ ½μ1;μ2; : : :μ168� associated with each of the
168 weekly hours calculated based on the 4 weeks preceding each
evaluation week. Specifically, the water demand forecast for a
generic hour j of the day is assumed to be equal to the correspond-
ing mean demand μj.

Analysis of Observed and Forecasted Net Inflow Time
Series

The analysis of the observed and forecasted net inflow time series is
conducted to compare the quality of the forecasts provided by the
31 teams across the different DMAs and evaluation weeks. The
comparisons of the observed inflows and forecasted ones submitted
by the teams are introduced in Fig. 1 for each of the 10 DMAs in
the first evaluation week (W1). The results of the other evalua-
tion weeks (W2, W3, and W4) are in Figs. S2–S4, along with a
Microsoft Excel spreadsheet including all water demand time
series forecasted by each team.

Concerning Fig. 1, some interesting aspects can be emphasized.
Considering DMA 1 [Fig. 1(a)], the observed trend is generally
well reproduced by the forecasting models, but only some of
them correctly reproduce the increase in water demand occurring
on Monday and Tuesday in the very early morning. In greater
detail, these peaks in demand are not related to problems in flow
data acquisition or exceptional uses but are traceable back to the
nature of DMA 1. The first DMA is, in fact, a hospital district,

and these periodic withdrawals of water are related to flushing
purposes, as confirmed by the water utility manager. The same
considerations apply to the other evaluation weeks (Figs. S2a,
S3a, and S4a).

An overall poor performance of the forecasting models for W1
is observed in DMA 2 and DMA 3 [Figs. 1(b and c)]. In this regard,
the net inflow of these two DMAs—both residential districts in the
countryside and showing similar features in terms of number of
users supplied and average net inflow—is susceptible to weather
conditions and, especially, rainfall during summer. In particular, a
significant decrease in water demand is observed on summer rainy
days for both DMAs, and this is due to the presence of several
houses featuring large gardens requiring irrigation and pools. This
behavior is emphasized in summer (to which W1 refers), whereas it
tends to have less impact during the rest of the year (i.e., W2–W4,
Figs. S2–S4). Overall, the majority of the methods, which overesti-
mated water demand for both the DMAs over week W1, did not
correctly consider the correlation between water demand and
weather. In addition, some issues with the forecasts emerge with
a few methods providing an almost constant value (around the aver-
age water demand) over the whole evaluation week.

The forecast of water demand over the four evaluation weeks for
DMA 4 [Figs. 1(d), S2(d), S3(d), and S4(d)] and DMA 5 [Figs. 1(e),
S2(e), S3(e), and S4(e)] was a success for almost all the methods
proposed, and the majority of teams provided forecasted time series
in line with the observed one. This can be related to the nature of the
districts (residential/commercial) and the high number of users sup-
plied, thus creating a high value of the average net inflow entering
the areas. This latter aspect is formally analyzed in the subsequent
phase of analysis.

The water demand forecast of DMA 6 [Figs. 1(f), S2(f), S3(f),
and S4(f)], DMA 7 [Figs. 1(g), S2(g), S3(g), and S4(g)], and DMA
8 [Figs. 1(h), S2(h), S3(h), and S4(h)] is generally good over the
four evaluation weeks, but some problems with the forecast models
emerge. Some problems include the underestimation of the DMA
night consumption (especially for DMA 6), the obtainment of al-
most constant forecasted time series, or the temporal shifting of the
forecasted series with respect to the observed one.

DMA 9 [Figs. 1(i), S2(i), S3(i), and S4(i)] and DMA 10
[Figs. 1(j), S2(j), S3(j), and S4(j)] are commercial/industrial
districts—close to the port—featuring similarities in the type of
users supplied and values of net inflow. A different weekly pattern
characterizes the water demand time series of these DMAs as
opposed to the patterns that are generally associated with residen-
tial DMAs. Indeed, the DMA inflow trend highlights an evident
difference between weekdays and weekends, with a clear water-
consumption drop occurring over the latter as a consequence of the
decrease or halting of most industrial activities (Mazzoni et al. 2024).
Despite the similarity between DMA 9 and DMA 10, the fore-
casting methods show a different performance for the two DMAs
and the same evaluation week. For example, for W1, the forecast
for DMA 10 [Fig. 1(j)] is generally good, whereas the forecast for
DMA 9 [Fig. 1(i)] tends to be more affected by inaccuracies re-
lated to very smooth, almost constant forecasted time series, or
the overestimation of water demand mainly for the second day of
the week.

To evaluate the performance of each water-forecasting model,
the three PIs are considered, and the results of this quantification
are discussed as the second level of analysis.

Performance Indicator Analysis

The second level of analysis focuses on the three PIs. On the
one hand, PI1 and PI2 refer to the MAE for a shorter term period
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(i.e., the first 24 h of each evaluation week) and to a longer term period
(i.e., the period between the second and the final day of each evalu-
ation week), respectively. On the other hand, PI3 is evaluated as the
maximum absolute error for the same shorter term period as for PI1.

The values of the single PIs for all teams and referring to all
evaluation weeks (i.e., W1, W2, W3, and W4) are considered for
each DMA. The boxplots of these values are reported in Fig. 2,
where the y axis is normalized with respect to the average net in-
flow of the single DMA (to facilitate the comparison among the
different districts), and the dots point out the mean value of the
considered PI. In detail, Fig. 2 highlights that the average MAEs
for the shorter term period (i.e., PI1) and the longer term period
(i.e., PI2) are generally very similar, with values lower than 10%
of the average net inflow (except for few cases) and rather limited
dispersion of the single values of PI1 and PI2. Otherwise, the aver-
age maximum absolute error (i.e., PI3) exceeds 20% of the aver-
age net inflow for almost all DMAs with single values of PI3
generally quite spread (up to values of more than 100%).

For most of the DMAs (i.e., DMAs 1–5, 7, and 8), the average
value of PI1 remains slightly lower than the average value of PI2.

In other words, the forecast in the shorter term tends to be margin-
ally better than the forecast in the longer term. However, this is not
the case for a few DMAs (i.e., DMAs 6, 9, and 10), for which the
accuracy of the forecast methods is slightly higher in the longer
term period.

From the analysis of PIs, a second aspect related to the values of
the first two PIs can be emphasized: PI1 and PI2 tend to decrease
with the increase in the average net inflow of the DMAs, meaning
that the higher the net inflow of the DMA, the better the perfor-
mance of the forecast methods. This aspect is highlighted by the
graphical results reported in Fig. 3 and seems generally valid, re-
gardless of the characteristics of the DMA and the users supplied.
In detail, on the one hand, higher values of PI1 are associated with
DMA 1, DMA 3, and DMA 6, which are the three districts with
the lowest values of average net inflow (i.e., 8.2, 4.2, and 8.4 L=s,
respectively). On the other hand, the lowest value of PI1 is asso-
ciated with DMA 5, which is the most demanding in terms of
water delivered to the area (i.e., 78.7 L=s). Similar considerations
are valid if PI2 is considered. These results confirm that larger
DMAs featuring a high number of users tend to result in a more

Fig. 1. Observed and forecasted inflow in the 10 DMAs during the first evaluation week (W1).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Boxplot of the values of PI1, PI2 and PI3 for each of the (a–j) 10 DMAs and evaluation weeks, considering all the 31 WDFMs.
The y axis is normalized with respect to the average net inflow of the DMA, whereas dots point out the mean value assumed by the single PIs.

(a) (b)

Fig. 3. Average values of (a) PI1; and (b) PI2 as a function of the DMA average net inflow. The number next to each marker refers to the DMA
considered in the competition.
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stable trend of water demand over time and, thus, are easier to
forecast.

Ranking and WDFM Performances

The third level of analysis is based on the ranking of the BWDF and
discusses the key aspects that contribute to the definition of the
final placement of the participating teams, as well as the features
of the WDFMs applied.

The ranking is obtained by evaluating the average rank value R
defined in Eq. (5) for each one of the 31 teams starting from the
single rank values, rdjw , obtained considering each DMA d (d ¼
1; : : : ;D being D ¼ 10), evaluation week w (w ¼ 1; : : : ;W being
W ¼ 4), and performance indicator PI (j ¼ 1; 2; 3). The anony-
mized ranking of the BWDF is reported in Fig. 4, where for each
team the single rank values, rdjw , are considered to build the box-
plots, whereas the average rank value, R, is shown with a dot. In
relation to Fig. 4, teams are ordered on the x axis based on their
ranking and, consequently, based on the associated average rank
value, R. The winning team corresponds to the x coordinate equal
to 1 (i.e., first position), whereas the worst performing team cor-
responds to the x coordinate equal to 31 (i.e., last position). The
ranking presented in the figure is thus not related to the order in
which WDFMs are introduced in the Competing Methods section.
However, the WDFMs related to the highest ranking—i.e., placed
in the first 10 positions of the BWDF—are indicated in Table 3.

Fig. 4 reveals that the first-placed team obtained a value of R of
almost 7, which is higher than the minimum possible average rank
value, Rmin ¼ 1, that could have been obtained only if the team
overall placed in the first position would have been placed in
the first position in each of the D · W · J ¼ 120 single rank values,
rdjw . Conversely, the team placed in the last position is associated
with an R value of almost 27, which is lower than the maximum
possible average rank value, Rmax. This means that no teams
achieved the highest or the lowest performance for all PIs, DMAs,
and evaluation weeks.

More specifically, the teams placed in the first four positions
achieved average rank values R rather distant from each other
(i.e., R equal to 6.6, 7.7, 9.2, and 10.3, respectively), whereas
the teams covering the positions from the fifth to the ninth have

rather similar R values (i.e., R overall ranging between 11.2 and
12.1). A sort of plateau with a slightly increasing trend is observ-
able between the 10th and the 24th positions (R between 13.5 and
18.2). By contrast, the last seven teams are associated with con-
siderably higher values of the average rank value R (with values
from 21.4 to 26.7, the latter referring to the team in the last
position). Beyond the chart, additional aspects can be observed
from Fig. 4. For example, with a focus on outliers, it emerges that
also the winning team was placed in the lowest positions at least
once (i.e., in the case of at least one combination of DMA, evalu-
ation week, and performance indicator). At the same time, teams
overall placed in the last several positions performed better than
the majority of the teams for a given PI, week, and DMA at least
once. This confirms that, overall, no method always outperformed
or underperformed the others for all PIs, evaluation weeks, and
DMAs.

To further validate the above observations, the boxplots of the
single rank values are produced for individual PIs (Fig. S5), evalu-
ation weeks (Fig. S6, Supplemental Materials), and DMAs (Fig. S7
for DMAs 1–4, Fig. S8 for DMAs 5–8, and Fig. S9 for DMAs 9
and 10) where the spread of single rank values can be observed.
When a single PI, evaluation week, or DMA is considered, the ten-
dency of some forecast models to perform better or worse is em-
phasized. By way of example, if evaluation week W1 was only
considered, the team positioned 29th would be placed in the middle
of the ranking (Fig. S6a). Similarly, if only DMA 8 was considered
(Fig. S8d), the team placing seventh would be the best performing
team. In light of the above considerations, it can be stated that
assessment criteria considering more DMAs, more evaluation peri-
ods, and more evaluation metrics emerge as essential requirements
when it comes to effectively evaluating the performance of a water
demand forecasting model.

If ranking is coupled with the available information regarding
the type of methods proposed by the teams, further considerations
can be set forth. A graphical representation of the link between
chart and method characteristics is reported in Fig. 5, where teams
are marked with different colors and symbols based on the forecast-
ing model type resulting from clustering. In addition, methods that
included a time series analysis component in the forecasting
method are further highlighted.

Fig. 4. Ranking of the 31 participating teams. Boxplot of the single rank values considering the three PIs, the four evaluation weeks, and the 10
DMAs. Correspondent average rank values R are also shown (dots).
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Hybrid methods tend to have better performance than single-
model approaches, whereas the use of a single method generally
results in lower accuracy forecasts. Overall, including TS analysis
as a component of the forecast method leads to better results. It is
worth noting that the teams placed in the first three positions—that
is, Kley-Holsteg et al. (2024), Zanutto et al. (2024), and Bakhshipour
et al. (2024) (i.e., M1, M2, and M3 in Table 3)—used hybrid
models including TS analysis as a component of the forecasting
method. Specifically, (1) M1 (Kley-Holsteg et al. 2024) includes
a combination of more than 50 individual WDFMs—spacing from
ANN-based models (e.g., long-short-term memory networks and
multilayer perceptron-based techniques) to TS models—that are
individually applied in relation to each DMA and evaluation week,
while the overall forecast is provided by mean of an automated ag-
gregation method that dynamically combines individual WDFM
forecasts by adjusting weights based on past performance; (2) M2
(Zanutto et al. 2024) integrates an ensemble of different WDFMs of
different natures—including ANNs (convolutional neural networks)
and OSC techniques (gradient boosting)—to provide a deterministic
forecast based on the selection and the weighted combination of
the top-performing WDFMs (compared against the results of TS ap-
proaches, e.g., rolling average); and (3) M3 (Bakshipour et al. 2024)
relies on the integration of three soft computing methods—including
ANN-based models and OSC techniques (convolutional neural net-
works, multilayer perceptron-based approach, and gradient boosting)—
the weights of which are fine-tuned to provide an overall, optimized
forecast.

In this regard, the naive method, which generates water demand
forecasts based on the mean values belonging to weeks preceding
each evaluation week, was considered as a benchmark. In particu-
lar, in light of the ranking of the challenge (Fig. 5), the naive
method would place at the 12th position, thus performing better
than two-thirds of the methods proposed by the participating teams.
Although exclusively based on historical net inflow data and the
related mean values, the naive method allows seizing the perio-
dicities that characterize water demand time series at different
temporal scales, from daily to weekly and seasonal. Therefore,
it can be considered as an effective tool for water demand fore-
casting, allowing the obtainment of a raw—but robust—solution
to use as a benchmark without facing the limitations related to the
application of data-driven methodologies, e.g., large amounts of time

series data needed. In this regard, it is worthy of note that the ma-
jority of the forecast methods outperforming the naive method in-
clude a simple TS approach (in line with the naive method) in the
forecasting process, or consider it as a benchmark. This allowed to
automatically or manually check for the absence of gross errors in
the forecasted time series, while verifying that the water demand
periodical trend is correctly forecasted. Hence, this choice proved
to be successful when it comes to increasing method robustness and
performance.

Conclusions

Organized in the context of the 3rd International WDSA-CCWI
Joint Conference held in Ferrara (Italy) in 2024, the BWDF pro-
vided an excellent opportunity for researchers and practitioners to
solve a complex problem related to real-world WDNs. In particular,
the challenge aimed to compare the effectiveness of methods for
the short-term forecast of water demand considering 10 DMAs in
a real WDN located in the northeast of Italy. Beyond defining the
challenge and the assessment criteria, this paper summarizes the
approaches adopted by the 31 teams participating from different
contexts worldwide. This work also offers a comparison of the
results submitted by each team, outlining the major insights on the
state-of-the-art of short-term water demand forecasting. The out-
comes and the key findings that emerged from the study are re-
ported in the following:
• In general, the participating teams provided forecasted time

series in line with the observed ones over the four evaluation
weeks defined in the context of the challenge. In a few cases,
peculiar issues emerged with some models, such as the obtain-
ment of the forecasted net inflow series characterized by almost
constant values over the whole evaluation week, along with time
series affected by a temporal shifting with respect to the ob-
served one.

• The assessment of the three PIs for all the teams concerning the
four evaluation weeks and the 10 DMAs allows for making
additional considerations. On the one hand, the average MAEs
within the first 24 h (i.e., PI1) and in the period between the
second and the final day of each evaluation week (i.e., PI2) are
generally very similar, with values lower than 10% of the

Fig. 5. Forecast methods positioning based on the average rank value R with thematic map based on forecasting model type.
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average net inflow (except for a few cases), and single values
of the indicators show somewhat limited dispersion. On the
other hand, the average maximum absolute error (i.e., PI3)
exceeds 20% of the average net inflow for almost all DMAs
with single values of PI3 generally quite spread (up to values of
more than 100%). Overall, the forecast in the shorter term
tends to be slightly better than the forecast in the longer term.

• No method always outperformed or underperformed the
others for all PIs, evaluation weeks, and DMAs. However,
hybrid methods tend to perform better than single-model
approaches.

• Surprisingly, the naive method would have outperformed two-
thirds of the methods proposed by the participating teams, since
it can seize the periodicities in water demand and provide an
approximate but robust solution exclusively based on histori-
cal inflow data. It is worthy of note that the majority of the fore-
cast methods that performed better than the naive (including
the teams placed in the first three positions) consider, among
the others, a simple TS approach in line with the naive in the
process.
Overall, the results obtained in the context of the BWDF reveal

that a combination of methods of different natures can effectively
improve the accuracy of a forecast model, as demonstrated by the
top-performing WDFMs. Despite this, water demand forecast is
still a complex problem, and the selection of the most appropriate
water demand forecasting model is not always straightforward. To
this regard, the following general recommendations for future
WDFM applications are provided: (1) assessment criteria that con-
sider more than one metric, more than one DMA, and more than
one evaluating week emerge as an essential requirement to evaluate
the robustness of a water demand forecasting method and under-
stand the circumstances under which the selected method is more
effective (e.g., 24-h versus weekly or peak demand forecast, large
versus small DMA, residential versus nonresidential water demand,
winter versus summer forecast, etc.); (2) automated or human-
based postprocessing checks emerge as a critical component of the
forecasting process to exclude the presence of gross errors in the
forecasted water demand and check the periodicity of the related
time series; and (3) TS analysis represents a relevant component
for direct forecast benchmarking; i.e., the inclusion of TS tech-
niques as a benchmark component of the forecast can lead to better
and more consistent results.

The complex problem of water demand forecasting still re-
mains an open topic with room for improvement, as also shown
in the context of this challenge. For example, even though water
demand forecasting is characterized by a certain degree of uncer-
tainty due to the variability of water consumption (Gagliardi et al.
2017), applications of probabilistic approaches for short-term
water demand forecasting have not been widely investigated in
the scientific literature. Within the context of the BWDF, most of
the teams made use of deterministic methods. This may be related
to the nature of this competition, being a deterministic solution
requested, and characterization of the forecasting uncertainty dis-
regarded in the PIs used for evaluating the performance of the
methods proposed. In fact, in general, the application of probabi-
listic approaches is dependent on the framework in which the
forecast has to be used and on whether this framework can benefit
from the application of stochastic outcomes. However, probabi-
listic approaches for short-term water demand forecasting can
represent a field to be further explored and tested, particularly
whenever the estimation of the uncertainty related to the fore-
casted demands can be effectively exploited, for example, in the
decision-making process.

In conclusion, the BWDF can be considered an important mile-
stone in the area of short-term water demand forecasting, providing
a freely accessible database that can become a benchmark for future
studies.
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Supplemental Materials

Observed water demand data, weather data, calendar data, fore-
casted water demand data, and Figs. S1–S9 are available online
in the ASCE Library (www.ascelibrary.org).
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