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AFFORDABLE WATER DURING COVID-19:
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AVOIDANCE BEHAVIORS

Abstract

Water distribution systems (WDSs) should deliver safe and affordable water for

communities, yet consumers are regularly exposed to tap water that violates fed-

eral guidelines for pathogens and chemicals. In response to reduced water quality,

consumers may shift demands away from tap water to bottled water, increasing

household water spending. Intra-system water quality fluctuates with changes in

demands, a consequence observed during the COVID-19 pandemic. This research

develops the COVID-19 social-distancing and tap water avoidance agent-based

model (COST-ABM), which simulates water quality in a water distribution net-

work and decisions to avoid tap water and purchase bottled water. COST-ABM is

developed to assess equitable access to affordable water. Agents represent water

consumers that decide to avoid tap water by purchasing bottled water for cooking,

cleaning, and hygienic end uses, reducing demand from the system. The agent-

based model is tightly coupled with a water distribution system model that calcu-

lates the spatiotemporal dynamics of water quality in a pipe network, which is used

in agent decision-making. Equity is evaluated in a bottom-up approach using the

cost of tap and bottled water as a percentage of household income, calculated at

each household. The framework is applied for a virtual water distribution system,
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and results demonstrate economic inequities in water affordability. This research

presents a framework to assess equity in a WDS based on tap water avoidance and

water affordability and can be used to facilitate infrastructure management that

provides equitable access to safe and affordable water.

Keywords: agent-based model, equity, water distribution systems, water

affordability

1. Introduction

Access to safe and affordable water is essential to promote public health and

economic development. Public water distribution systems (WDSs) serve 286 mil-

lion people in the United States, yet in recent years, millions of people have been

exposed to tapwater that violates federal guidelines for pathogens, nitrates, arsenic,

and harmful disinfection by-products (Mueller and Gasteyer, 2021; Fedinick et al.,

2019; Allaire et al., 2018). Water stagnation and dead end pipes lead to the decay of

residual chlorine, allowing microbes to flourish (Charisiadis et al.; Abokifa et al.,

2016; Liu et al., 2017; García-Ávila et al., 2021). Chemical constituents interact

with hydraulic dynamics, leading to potential spikes in disinfection by-products

and metal elements in pipe systems (Maheshwari et al., 2020; Martin et al., 2022).

Contaminants in drinking water cause gastrointestinal illnesses, harm to nervous

and reproductive systems, and chronic diseases (USEPA, 2024). The dynamics of

the hydraulic system play an important role in the fate and transport of contam-

inants, directly affecting spatial variations in tap water quality. Large and unex-

pected changes in demand can exacerbate hotspots of poor water quality by causing

changes in flow direction, velocity, and stagnation. The complex interaction be-

tween water demand changes and intra-system water quality disparities is largely
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unknown.

One example of documented system-wide demand changes was the COVID-19

pandemic. The COVID-19 pandemic changed many aspects of daily life for people

around the world, including work schedules and the willingness to gather in groups

or public settings, all with the goal of protecting personal health. By adopting

social distancing behaviors, individuals spent more time at home and less time in

public spaces including places of work and leisure. Changes in the spatio-temporal

patterns of individuals drove changes in water demand (Cahill et al., 2022). The

primary change observed in water demand was an increase in residential demand

caused by working from home, worker hour reduction or layoff, and unemploy-

ment. Water utilities reported changes in water demand, changes in water quality,

and necessary adjustments in chlorine dosing as a result of COVID-19 demand

changes (Berglund et al., 2022; Spearing et al., 2021). Vizanko et al. (2024b)

quantified the connection between COVID-19 social distancing and water demand

using an ABM and found water quality degradation in residential locations near

industrial locations without characterizing the ramifications of water quality degra-

dation.

Intra-system changes in water quality can create inequities in access to clean

and affordable water. Deterioration of tap water quality, manifested as taste, color,

and odor, leads to tap water avoidance (Doria et al., 2009; Doria, 2006; Levêque

and Burns, 2017; Hamed et al., 2022). In addition, households choose to avoid

tap water in response to public reports of drinking water quality (Chatterjee et al.,

2022; Ochoo et al., 2017; Pierce et al., 2019) and risk perceptions (Park et al., 2023;

Grupper et al., 2021; Pierce and Gonzalez, 2017; Weisner et al., 2020; Johnstone

and Serret, 2012; Levêque and Burns, 2017; Hu et al., 2011). Avoiding tap water
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significantly increases household spending on water because bottled water is, on

average, 100 times more expensive than tap water (IBWA, 2021a; Teodoro, 2018).

Low-income and minority households are vulnerable to water affordability con-

cerns, as they are more likely to be exposed to contaminated tap water, less likely

to trust tap water, and more likely to consume disproportionate amounts of bot-

tled water (Hobson et al., 2007; Scherzer et al., 2010; Doria, 2010; VanDerslice,

2011; Gorelick et al., 2011; Hu et al., 2011; Huerta-Saenz et al., 2012; Balazs and

Ray, 2014; Regnier et al., 2015; Hanna-Attisha et al., 2016; Pierce and Gonzalez,

2017; Javidi and Pierce, 2018; Schaider et al., 2019; Fedinick et al., 2019). Water

equity has been evaluated based on access to affordable water, calculated as the

cost of water as a percentage of median household income (Goddard et al., 2022).

Water is considered affordable for the community when the ratio is below a pre-

determined threshold, such a 4.0 or 4.5% (USEPA, 1984; Cardoso and Wichman,

2022). Cardoso andWichman (2022) adopted a value of 4.5% to represent the cost

of water equivalent to working eight hours at minimum wage, and Teodoro (2018)

used the disposable income for the lower quintile instead of the median household

income to calculate the water affordability ratio. Karrenberg et al. (2024) modeled

water affordability based on the cost of water as a percent of income. Other re-

search studies applied the Gini index and Thiel Index to assess equity concerns in

water affordability at city, county, and national scales (Malakar and Mishra, 2017;

Malakar et al., 2018; Babuna et al., 2020; He et al., 2020; Goddard et al., 2022).

A related study developed the water injustice model to assess access to safe water

for counties in the U.S. by evaluating the number of households with incomplete

household plumbing, community water systems that violate the Safe DrinkingWa-

ter Act, and permit holders that do not comply with the Clean Water Act (Mueller
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and Gasteyer, 2021). Existing models evaluate equity at a community-level with-

out accounting for the distribution of water quality within a WDS, uneven distri-

bution of resources within a population of water consumers, and decisions to avoid

tap water (Babuna et al., 2023; Malakar and Mishra, 2017; Mueller and Gasteyer,

2021; Karrenberg et al., 2024).

Inequities in water affordability emerge due to the interplay between complex

spatio-temporal hydraulic conditions and household-level decisions to avoid tap

water. Large demand changes can lead to fluctuations in flows and pipe velocities,

which can exacerbate water stagnation in pipes and local water quality deterio-

ration, leading to expensive tap water avoidance behaviors (Blokker et al., 2016;

Machell and Boxall, 2012, 2014; USEPA, 2002). However, intra-system inequities

within WDNs remain an unexplored area of research. An intersectional and so-

ciotechnical approach is needed to study and simulate intra-system equity based

on interactions among complex system actors and infrastructure in the context of

drinking water quality, tap water avoidance, and affordability. A complex adap-

tive system (CAS) approach characterizes heterogeneous and interacting agents

that generate dynamic feedback regimes and emergent system-level phenomena

(Holland, 1996; Axelrod, 1997; Miller and Page, 2007). Agent-based modeling

(ABM) simulates CASs by encoding agents with heterogeneous parameters and

rules of behavior that facilitate interaction with other agents and the environment

(Wilensky and Rand, 2015). ABMs are well suited to model intersectional eq-

uity by simulating interactions of heterogeneous actors and their unique experi-

ence of the environment (Williams et al., 2022; Liu et al., 2025), and ABMs have

been applied to explore the adaptation of consumer water demands and the per-

formance of urban water systems (Bakhtiari et al., 2020; Berglund et al., 2023;
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Vidal-Lamolla et al., 2024). An ABM approach was developed to simulate in-

teractions among water consumers and a hydraulic network, exploring contamina-

tion response (Zechman, 2011; Shafiee and Zechman, 2013; Shafiee and Berglund,

2017; Shafiee et al., 2018; Strickling et al., 2020; Kadinski et al., 2022b,a), premise

plumbing (Burkhardt et al., 2023), and water reuse (Kandiah et al., 2016; Ramsey

et al., 2020). Vizanko et al. (2024b) developed a tightly-coupled framework to ex-

plore water demand and water age changes caused by COVID-19 social distancing

behaviors. The framework was applied to identify inequities in exposure to poor

water quality that emerge due to stagnating water near industrial areas, but did not

analyze how changes in water quality impact tap water avoidance and household

water expenses. Another study used an ABM approach to simulate and assess in-

equities in affordable water caused by time of use tariffs, but did not explore agent

interaction with a hydraulic network (Karrenberg et al., 2024). New modeling ap-

proaches are needed to quantify inequities that arise from complex interactions

between human behaviors and hydraulics.

The goal of this research is to develop an ABM framework to capture the emer-

gence of water equity as a community of consumers respond to the quality of

drinking water provided by a WDS. This research presents the COVID-19 social-

distancing and tap water avoidance agent-based model (COST-ABM), which ex-

tends an existing ABM framework that couples household-level water use deci-

sions with a WDS model (Vizanko et al., 2024a). Agents represent households

that transmit COVID-19 and make social distancing decisions, updating demands

at residential, industrial, and commercial nodes. A WDS model is used to simu-

late water quality changes as changing demand patterns lead to stagnated water and

increased water age. This research develops new modeling to simulate tap water
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avoidance decisions, and agents select to use bottled water to meet different end

uses in response to high water age. Equity is assessed as water affordability for low

and high income groups, based on the cost of tap and bottled water. COST-ABM is

applied for a case study to demonstrate disparities in access to safe and affordable

water. This work presents a framework to assess changes to the affordability of

water based on changing water quality and tap water avoidance.

The manuscript is organized as follows. Section 2 describes the materials and

methods used to develop COST-ABM. The illustrative case study and modeling

scenarios are described in Section 3. Results of applying COST-ABM to the case

study are shown in Section 4. Section 5 provides a discussion of the results in

the context of previous related literature, and Section 6 summarizes the research

with broad conclusions of this work. Data required to implement the COST-ABM

framework is provided in the Supplemental Information.

2. COVID-19 Social Distancing and Tap Water Avoidance Agent-based Model
(COST-ABM)

COST-ABM was developed using an existing framework that incorporates a

susceptible-exposed-infected-recovered (SEIR) COVID-19 transmission model, a

social distancing model, and a hydraulic model (Vizanko et al., 2024a). This re-

search adds a water equity model that simulates tap water avoidance in response to

high water age. The ABM framework is updated to assess the total cost of water

as the sum of the cost of tap and bottled water and reports the cost of water as the

percent of income (Figure 1). The water equity model is describe as a sub-model

in the COST-ABM framework (Section 2.4). Households that buy bottled water

use less tap water, further changing water flows and water quality in the WDS.
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Figure 1: COST-ABM integrates a new water equity model.
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COST-ABM developed in this research is described using the ODD+D proto-

col (Müller et al., 2013), which is an expansion of the ODD protocol (Grimm et al.,

2006). The ODD+D protocol includes overview, design concepts, and details. A

description of human decision-making is included in design concepts.

2.1. Overview

2.1.1. Purpose

The purpose of COST-ABM is to quantify the distribution of financial bur-

den of water quality changes and tap water avoidance caused by social distancing

during the COVID-19 pandemic.

2.1.2. Entities, State Variables, and Scales

An agent represents a water consumer that consumes water at the node it oc-

cupies. Agents make decisions that affect tap and bottled water demand (Table 1).

Agents update decisions to use bottled water based on the water age at the node

they occupy. Agents are assigned COVID-19 threshold parameters (Table B.1) and

state variables that are updated to reflect an agent’s COVID-19 status, time spent

in phases of COVID-19 disease, and decision-making (Table B.2).

The physical environment of the ABM is represented by a hydraulic network

composed of nodes, pipes, pumps, tanks, and valves. Agents move between res-

idential and non-residential nodes based on diurnal schedules. Social distancing

changes movement patterns, leading to changes in the water demands exerted by

agents and, therefore, in the hydraulic response of the system. A small-world net-

work (SWN) (Watts and Strogatz, 1998) is used to simulate agent social inter-

actions, connecting each agent with six other agents that pass information about

their experience with COVID-19. Each simulation is run at hourly time steps for 6
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months (180 days). Agent movement is updated every hourly time step, COVID-19

transmission information is updated every day, and tap water avoidance behaviors

are updated every month.

2.1.3. Process Overview and Scheduling

Agents and households perform activities in hourly (H𝑡), daily (D𝑡), andmonthly

(M𝑡) steps (Vizanko et al., 2024b). At hourly time steps, agents move between res-

idential and non-residential locations, update COVID-19 timing indicators (𝑡𝑒𝑥𝑝,

𝑡𝑖𝑛 𝑓 , 𝑡𝑠𝑒𝑣, and 𝑡𝑠𝑦𝑚𝑝), transmit COVID-19, interact with media by updating mass

media exposure (𝐶𝑚𝑒𝑑) based on hourly probabilities (Table SI.2), and exert water

demand at a network node. At daily time steps, agents update COVID-19 infec-

tion status state variables (𝑆, 𝑆𝑠𝑦𝑚𝑝, and 𝑆𝑖𝑛 𝑓 ), personal experience with COVID-

19 state variable (𝐶𝑝𝑒𝑟), and friends and family COVID-19 status state variable

(𝐶 𝑓 𝑓 ). Agents also update decisions to adopt social distancing measures (work

from home, dine out less, grocery shop less, and wear PPE) using individual

Bayesian Belief Network (BBN) models on a daily time step. At monthly time

steps, households of agents calculate the cost of buying tap and bottled water at

their home node (𝐶𝑡𝑤 and𝐶𝑏𝑤 , respectively), update decisions to use bottled water

based on water age (𝐷𝑖), and update the demand for tap and bottled water for their

home node (𝑄𝑡𝑤 and 𝑄𝑏𝑤, respectively). Sub-models for the water equity model

(actions that are taken at monthly steps) are presented in Section 2.4. Sub-models

for hourly and daily steps are adapted from Vizanko et al. (2024b) and included in

the Appendix (Section Appendix A).
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Table 1: Agent parameters are used to model tap water avoidance and water affordability. TWA:

tap water avoidance.

Parameter Symbol Value

Water age 𝐴𝑤 Hydraulic simulation

Decision to drink BW modifier 𝜏𝑑 130

Decision to cook with BW modifier 𝜏𝑐 140

Decision to use BW for hygiene modifier 𝜏ℎ 150

Threshold to use BW for [drinking, cooking,

hygiene]

𝑇𝑖 Equation 1

Decision to [drink, cook, hygiene] with BW

(TWA)

𝐷𝑖 [yes, no]

Tap water base rate 𝐵𝑅𝑤 $15.55

Sewer base rate 𝐵𝑅𝑤 $16.21

Tap water unit price 𝐶𝑅𝑤 $0.000844/L

Sewer unit price 𝐶𝑅𝑠 $0.000816/L

Bottled water unit price 𝐶𝑅𝑏𝑤 $0.325/L

Tap water demand 𝑄𝑡𝑤 Equation 7

Bottled water demand 𝑄𝑏𝑤 Equation 6

Drinking water demand reduction 𝑄𝑅𝑑 Equation 3

Cooking water demand reduction 𝑄𝑅𝑑 Equation 4

Hygiene water demand reduction 𝑄𝑅ℎ Equation 5

BW cost 𝐶𝑏𝑤 Equation 12

TW cost 𝐶𝑡𝑤 Equation 11

Water cost 𝐶𝑤 Equation 8

Household Income 𝐼𝐻 Section 2.3.2
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2.2. Design Concepts

2.2.1. Theoretical and Empirical Background

Adoption of TWA Behaviors: Organoleptics, or taste, odor, and color, of tap wa-

ter is a primary reason individuals buy bottled water (Doria, 2010). Many water

quality factors can impact the formation of taste, odor, and color compounds, and

this framework uses water age to represent poor water quality. Three TWA behav-

iors are modeled, including drinking bottled water, cooking with bottled water,

and using bottled water for teeth brushing. These actions were selected as the

most probable actions to require bottled water as they include direct ingestion of

water. Water age thresholds that drive TWA behaviors are based on research that

demonstrated a reduction in total chlorine and an increase in heterotrophic plate

count (HPC) values after water age reached values of 60 - 80 hours (Machell and

Boxall, 2014). Because HPC values are not directly linked to organoleptic values,

conservative values of 130 - 150 hours were selected for TWA decision thresh-

olds. A threshold of 130 hours was selected for drinking bottled water as the first

TWA behavior that would be adopted, and a value of 150 was selected for hy-

giene, based on the assumption that households would resist buying bottled water

for teeth brushing until water quality had worsened further. COST-ABM does not

model a connection between COVID-19 prevention measures and TWA behaviors.

It is assumed that drinking, cooking and teeth brushing rates are unchanged when

individuals practice social distancing behaviors.

COVID-19 Transmission: Disease transmission of COVID-19 is modeled using

the formulation developed for Covasim, which is an ABM that provides mathe-

matical relationships and parameter values for the COVID-19 SEIR model (Kerr

et al., 2021). Susceptible agents have an age-progressive probability of becom-
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ing exposed when occupying the same node as a infected agents. Agents progress

through the four stages of the SEIR model and cannot be reinfected.

Adoption of Prevention Measures: Agents adopt prevention measures using a

decision-making model that is based on the Protection Motivation Theory. BBN

models were developed to use variables that represent threat appraisal and cop-

ing appraisal with decisions to adopt social distancing behaviors (Vizanko et al.,

2024a). BBNs were trained using responses to a survey administered across 11

countries in March and April 2020 for four social distancing behaviors, working

from home, dining out less, shopping for groceries less, and wearing personal pro-

tective equipment (PPE) (Figure SI.2, Figure SI.3, Figure SI.4, Figure SI.1). Vari-

ables that are used as input for BBN models are described in Table SI.3 and Table

SI.4. Accuracy values for the four BBN models range from 66.5 - 95.2% and 𝐹1

values range from 52.8 - 82.1% (Table SI.5).

Demand Changes: Demand changes at residential nodes are simulated based on

analysis of water demands during the first week of the pandemic (Pesantez et al.,

2022). Data were collected at approximately 20,000 accounts for a utility in Cal-

ifornia, and demands for March 2019 and March 2020 were compared to assess

changes due to a stay-at-home order. Analysis demonstrated that demands during

the pandemic were sustained throughout the day. The model represents the de-

mand change based on agent decisions to work from home: if 50% of agents at

a residential node work from home, the demand pattern is changed to a flattened

demand curve adapted from data collected during the first week of the COVID-19

pandemic (Pesantez et al., 2022). This represents a higher volume of water use

during working hours and a higher total volume of water consumed (Table SI.1).

13

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



2.2.2. Individual Decision-making

Decisions to adopt social distancing behaviors are simulated using BBN mod-

els. Agents adopt social distancing behaviors based on the posterior probability of

each BBN (Figures SI.1, SI.2, SI.3, and SI.4) updated with input state variables,

including COVID-19 status (𝐶𝑝𝑒𝑟), friends and family COVID-19 status (𝐶 𝑓 𝑓 ), and

COVID-19 media exposure (𝐶𝑚𝑒𝑑).

The decision to adopt individual TWA behaviors, drink bottled water, cook

with bottled water, and use bottled water for hygiene, are selected when the water

age exceeds a threshold based on the specific TWA behavior. Decisions to adopt

TWA behaviors are made once per month and are irreversible. If the water age falls

below the threshold for a TWA behavior after it has been adopted, the agent will

not revert back to tap water consumption. The assumption that TWA behaviors

are irreversible was chosen based on the relatively short simulation period of six

months. It is unlikely that consumers would revert back to tap water within six

months of a poor water quality event.

2.2.3. Collectives

Agents are grouped into households at initialization that are used to form each

agent’s family network, representing a mindset on TWA behaviors that is shared

within a household. All agents at a household share the same thresholds for TWA

decision-making and select the same decision because the water age at each node

is shared by all members of the household. Since TWA decision-making is shared

by the household, tap and bottled water costs are also calculated at the household

level.
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2.2.4. Heterogeneity and Stochasticity

Several agent parameters are assigned stochastically, which results in hetero-

geneity among agents. Water age thresholds, household income, BBN parame-

ters, residential and non-residential nodes, and time thresholds for each COVID-

19 stage are stochastically assigned. Agents use media including TV and radio

with stochasticity (Table SI.2), which contributes to the information that agents

use about COVID-19 to make social distancing decisions.

2.2.5. Observation

Parameters that are recorded each month include the number of households

drinking bottled water, number of households cooking with bottled water, num-

ber of households using bottled water for hygiene, demand for tap water for each

household, demand for bottled water for each household, cost of tap water for each

household, and the cost of bottled water for each household.

2.3. Details

2.3.1. Implementation Details

COST-ABM is implemented in Python version 3.12 using the Mesa package

for ABM coordination and the Water Network Took for Resiliency (WNTR) for

hydraulic analysis (Klise et al., 2017). All simulations were run in parallel on a

machine with a 2.10 GHz Intel Xeon Gold 6230 CPU with 40 cores and 128 GB

of RAM.

2.3.2. Initialization

Nodes in the water network are initialized with average water age values from

the base case scenario, and a warm-up period is run to ensure the water age at each
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node is at steady state. The warm-up period converges when the change in average

water age is less than 0.001. Each simulation is initialized with 0.1% infected

agents.

Time thresholds for each COVID-19 stage are drawn from log-normal distribu-

tions (Kerr et al., 2021) (Table B.1 and described by Vizanko et al. (2024b)). BBN

parameters (Table SI.3) are assigned to each agent from the survey responses. To

assign parameters to one agent, a survey response was selected randomly with-

out replacement. Residential and non-residential nodes are randomly assigned to

agents based on the capacity of consumer agents of each node.

Households are initialized with an income drawn from a gamma distribution.

Households are initialized with a water age threshold for each TWA behavior using

a 𝛽 distribution with parameters 𝛼 = 3 and 𝛽 = 1, which has a support of [0, 1] and

a mean value of 0.75. The threshold is initialized with a minimum value of 24 hrs

and a maximum of 𝜏𝑖 (see Table 1). Using the average value from the 𝛽 distribution

of 0.75, the average water age threshold for TWA behaviors for drinking, cooking

and hygiene are 121.5 h, 130 h, and 136.5 h, respectively.

𝑇𝑖 ∼ 𝐵𝑒𝑡𝑎(3, 1) ∗ 𝜏𝑖 + 24 (1)

2.3.3. Input Data

Necessary input data include: COVID-19 transition values, risk perception

variables for BBN training, time of use for radio and TV, hydraulic information

including pipes, pumps, tanks, valves and demand, and demographic, tap water

cost, and income parameters representative of a location of interest.
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2.4. Sub-models: Water Equity Model

Equations that are newly implemented in this research as the water equity

model are described as follows. Descriptions for the remaining steps that are

adapted from previous research (Vizanko et al., 2024b) are provided in Section

Appendix A.

The following steps are executed every 30 days within the water equity model.

These calculations use data on agent mobility from the previous 30 days of simu-

lation:

1. Households update decisions to use bottled water based on water age.
Each household compares the current water age at their home node, an out-

put of the hydraulic simulation of the previous 30 days, and updates deci-

sions to use bottled water for drinking, cooking, and hygiene (Equation 2).

𝐷𝑖 =


𝑁𝑜, if 𝐴𝑤 ≤ 𝑇𝑖

𝑌𝑒𝑠, if 𝐴𝑤 > 𝑇𝑖
(2)

where 𝐷𝑖 is the decision to adopt TWA 𝑖, which includes [drinking, cooking,

hygiene], 𝐴𝑤 is the water age at the household node, and 𝑇𝑖 is the threshold

for TWA 𝑖 (Table 1).

2. Households update tap and bottled water demand. Unadjusted tap water

demand, 𝑄𝑡𝑤,𝑢, for each node is calculated as a function of the number of

agents occupying each node and the hourly demand pattern. The unadjusted

tap water demand is the nodal demand if no TWA behaviors were adopted.

Households that adopt TWA behaviors, i.e., 𝐷𝑖 = 𝑦𝑒𝑠, reduce the demand

at the their home node, reducing the tap water demand. Drinking water

demand reduction is determined stochastically (Equation 3) (Crouch et al.,
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2021), cooking water demand is determined deterministically (Equation 4)

(Gleick, 1996), and hygienewater demand is determined stochastically using

a triangular function (Equation 5) (Crouch et al., 2021).

𝑄𝑅𝑑 =
30∑
𝑖=1

𝐿𝑁 (2.0, 0.75) ∗ 𝑁𝑎,𝑖 (3)

𝑄𝑅𝑐 =
30∑
𝑖=1

11.5 ∗ 𝑁𝑎,𝑖 (4)

𝑄𝑅ℎ =
30∑
𝑖=1

2 ∗ 𝑇𝑅(𝑚𝑖𝑛 = 0.25, 𝑚𝑎𝑥 = 1.5, 𝑚𝑜𝑑𝑒 = 0.5) (5)

where 𝑄𝑅𝑑 is the daily drinking water demand reduction (L), 𝑄𝑅𝑐 is the

daily cooking water demand reduction (L), 𝑄𝑅ℎ is the daily hygiene water

demand reduction (L), and 𝑁𝑎,𝑖 is the average number of agents at each node

for day 𝑖. The reduction is calculated each day and aggregated monthly.

𝑄𝑏𝑤 = 𝑄𝑅𝑑 +𝑄𝑅𝑐 +𝑄𝑅ℎ (6)

The tap water demand is the unadjusted tap water demand less the bottled

water demand (Equation 7).

𝑄𝑡𝑤 = 𝑄𝑡𝑤,𝑢 −𝑄𝑏𝑤 (7)

3. Households calculate the cost of buying water. The cost of tap and bottled

water is the summation of the two cost values (Equation 8).

𝐶𝑊 = 𝐶𝑡𝑤 + 𝐶𝑏𝑤 (8)
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where 𝐶𝑡𝑤 and 𝐶𝑏𝑤 are the cost of purchasing tap water and bottled water

($), respectively. The cost of purchasing tap water (Equation 11) has two

components, a cost for supply (Equation 9) and a cost for sewer (Equation

10).

𝑊 = 𝐵𝑅𝑤 +


0, if 𝑄𝑡𝑤 ≤ 8, 495𝐿

𝑄𝑡𝑤 ∗ 𝐶𝑅𝑤, if 𝑄𝑡𝑤 > 8, 495𝐿
(9)

𝑆 = 𝐵𝑅𝑠 +𝑄𝑡𝑤 ∗ 𝐶𝑅𝑠 (10)

𝐶𝑡𝑤 = 𝑊 + 𝑆 (11)

where𝑊 is the cost for water supply, 𝐵𝑅𝑤 is the tap water base rate, 𝑄𝑡𝑤 is

the tap water demand, 𝐶𝑅𝑤 is the tap water unit price, 𝑆 is the cost to sewer

water, 𝐵𝑅𝑠 is the sewer base rate, and 𝐶𝑅𝑠 is the sewer unit rate.

The cost of bottled water for a household for a month is the product of the

bottled water demand, 𝑄𝑏𝑤, and the bottled water unit price, 𝐶𝑅𝑏𝑤 (Equa-

tion 12).

𝐶𝑏𝑤 = 𝑄𝑏𝑤 ∗ 𝐶𝑅𝑏𝑤 (12)

where 𝐶𝑏𝑤 is the cost of bottled water.

3. Illustrative Case Study: Micropolis

The virtual water distribution network, Micropolis, is used to demonstrate the

COST-ABM framework (Figure 2). The infrastructure model for Micropolis was

developed by Brumbelow et al. (2007), and agent-based models of the consumers
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in the population were developed by Zechman (2011) based on the demand data

in the infrastructure model. This research develops another layer of data to de-

scribe the income for households in Micropolis, allowing new research in equity

for under-resourced groups. This research models agent income using data from

Clinton, North Carolina. Clinton was selected for this application because the pop-

ulation served by the municipal water provider in Clinton is 7,000, similar to the

size of Micropolis. Further, the Clinton water system has been in violation of the

Safe Water Drinking Act twice in the last 10 years.

3.1. Water Infrastructure Modeling

Micropolis consists of 434 residential nodes, 15 commercial nodes, and 9 in-

dustrial nodes. Four of the 434 residential nodes are multi-family housing units

with 10-200 households per node. Of the 15 commercial nodes, two are grocery

stores and three are restaurants for which different demand patterns were created to

better simulate these building types. Other nodes represent common commercial

buildings such as banks, post offices, and schools. Demand values for individual

commercial and industrial nodes were set during the development of Micropolis

and reflect the heterogeneity in building demands (Brumbelow et al., 2007; Zech-

man, 2011). The total volume of water supplied in Micropolis is 4.54 ML/day.

Industrial nodes are located along a central corridor to the east, and commercial

nodes are grouped near the center of the city with three grouped to the west (Figure

2). Micropolis is a complex WDS that when simulated with EPANET, provides

rigorously calculated water age values.

The cost of bottled water is $0.325/L, an average established by the Interna-

tional Bottled Water Association (IBWA, 2021b). The cost of tap water is the sum

of the tap water cost (Equation 9) and sewer cost (Equation 10, calculated using
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the 2023-2024 rate schedule from the city of Clinton, NC (Equation 11).

3.2. Population Modeling

Micropolis serves a population of approximately 4600 people. Data to describe

household income distributions were developed from median household income

estimates from the 2022 American community survey (ACS) (Bureau, 2022) for

the city of Clinton. Data table S1901 from the ACS was used to bootstrap gamma

distribution parameters and is recreated in Table 2. A bootstrapped dataset was

created by resampling 10,000 sets of 1,000 income values. The percentage of

households in each income bracket was multiplied by 100 and that number of uni-

formly distributed samples were drawn between the lower and upper bound of the

income bracket (Table 2). The mean and variance from this bootstrapped data set

were calculated and used to build a gamma distribution (Equation 13). The median

income assigned from the gamma distribution was $38,089 and the 20th percentile

income was $15,378. Corresponding values from the 2022 ACS for Clinton, NC

were $38,880 and $15,000, respectively, validating income assignment using a

gamma distribution calibrated with ACS data.

𝐼 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎 = 0.6697, 𝑏 = 92, 027.75) (13)

3.3. Modeling Scenarios

Four modeling scenarios are used to explore equity in Micropolis (Table 3).

The Base scenario does not include prevention measures (PM) associated with so-

cial distancing or TWAbehaviors. Other scenarios model PM and TWAbehaviors.

Sensitivity analysis is conducted using the TWA+PM scenario to test the influence
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Figure 2: Virtual city of Micropolis (Brumbelow et al., 2007). Single-family residential (green),

multi-family residential (red), commercial (blue), and industrial (yellow) buildings shown with the

hydraulic objects.
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Table 2: Income data used to bootstrap gamma distribution parameters.

Income Percentage of Population

$0 - $10,000 7.6%

$10,000 - $15,000 11.9%

$15,000 - $25,000 13.3%

$25,000 - $35,000 14.6%

$35,000 - $50,000 12.3%

$50,000 - $75,000 14.3%

$75,000 - $100,000 9.3%

$100,000 - $150,000 11.1%

$150,000 - $200,000 2.6%

$200,000+ 3.0%

of the change in industrial demands due to social distancing, as reported in Sec-

tion 4.4. All scenarios were executed for 30 randomly generated seeds that were

repeated between scenarios. The average runtime of each scenario was 3.25 hours.

4. Results

4.1. Demand and Water Age

Four scenarios were simulated to explore changes in demand over the 180-day

simulation period (Figure 3). Demands for the Base case do not change over the

simulation, reporting a 0.17% reduction in the average demand when comparing

the first 30 days and the final 30 days. Similarly, TWA behaviors do not signifi-

cantly change system-wide demand across the simulation, with a 0.013% increase

in average demand between the first 30 and final 30 days for the TWA scenario.
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Table 3: Modeling scenarios.

Scenario Prevention Measure Tap Water Avoidance

Base N N

TWA N Y

PM Y N

TWA+PM Y Y

When social distancing is included in the simulation for the PM and TWA+PM

Scenarios, there is a significant increase in demands (Figure 3b). Agents adopt so-

cial distancing behaviors (working from home, dining out less, and grocery shop-

ping less), causing residential demand to increase (Figure 3a). The difference be-

tween the PM and TWA+PM scenarios is negligible, with a 0.17% reduction in

demands for the TWA+PM scenario.

Water age is reported as a water quality metric for each of the four scenarios

(Figure 4). For the Base and TWA scenarios, water age does not change across

the simulation (Figure 4a, b). Only 6.6% of households exceeded the maximum

TWA threshold of 150 hours in the Base and TWA scenarios and 13.3% of house-

holds exceeded this threshold in the TWA+PM scenario (Figure SI.7). Because

TWA behaviors do not significantly affect the volume of demand and flows, water

quality is also not affected. In the PM and TWA+PM scenarios, residential water

age increased as a result of the close spatial proximity of a significant proportion

of residential nodes to industrial nodes. Industrial water age increased as agents

adopted social distancing behaviors and industrial water demands decreased. In-

creasing residential water age also increased the number of households exceeding

the threshold to adopt TWA behaviors (Figure SI.7). Commercial water age, on the
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Figure 3: Demand calculated for the Base, TWA, PM, and TWA+PM scenarios across (a) all nodes

and (b) residential nodes. Solid lines represent the mean demand and the shaded regions represent

the standard error for 30 simulations.
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Figure 4: Average water age at industrial, commercial, and residential nodes in the (a) Base, (b)

TWA, (c) PM, and (d) TWA+PM scenarios. Solid lines represent the mean water age and the shaded

regions represent the standard error for 30 simulations.

other hand, increased because most commercial nodes are located in the center of

the network, and velocities increased in the pipes supplying the commercial sector

by 200% (red box in Figure SI.8).

4.2. Tap Water Avoidance

The percentage of households that bought bottled water for cooking and drink-

ing increased when social distancing was implemented (Figure 5). In the TWA

scenario, the percentage of households buying bottled water for cooking or drink-

ing is approximately 7.5% at the end of the 180 day simulation (Figure 4a). Due to

water quality deterioration under the TWA+PM scenario associated with the water
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Figure 5: Percentage of households that bought bottled water for drinking, cooking and hygiene

(a) without social distancing (TWA) and (b) with social distancing (TWA+PM). Solid lines repre-

sent the mean percentage of households adopting each TWA and the shaded regions represent the

standard error for 30 simulations.

quality impacts of social distancing, the average percentage of households buying

bottled water for drinking and cooking is 14% (Figure 4b). Adoption of all three

TWA behaviors increases in the TWA+PM scenario because water age across the

residential nodes increased due to social distancing behaviors (Figure 4). More

households bought bottled water for drinking because the threshold for adoption

was 130 h, which is lower than the thresholds for other water end uses, at 140 h for

cooking and 150 h for hygiene.

4.3. Cost of Water

The median cumulative cost of water, including tap water, sewer, and bottled

water costs, for the base case is between $200 and $300 for 75%of households (Fig-
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ure 6). The cost of water increases marginally when TWA behaviors are included

due to existing values for water age causing households to buy comparatively ex-

pensive bottled water. Social distancing increases the cost of water for households

because households use more water at home, increasing household expenditure on

water. The largest increase in the median cost of water occurs when agents social

distance and avoid tap water (TWA+PM). The additive effect of increased water

use at residential nodes (Figure 3b) and increased bottled water buying behaviors

due to water quality deterioration creates an increase in water cost for a significant

proportion of households. The maximum household cost of water increased from

$400 in the Base scenario to nearly $1,000 in the TWA+PM scenario, a 150% in-

crease over the six month simulation. Median water costs also increased, rising

from $220 in the based scenario to $300 in the TWA+PM scenario. No difference

is observed in the cost of water for low-income (lower 20th percentile, Figure 6a)

and high-income (upper 80th percentile, Figure 6b) households.

The median cost of water as a percentage of income (%HI) for high-income

households (Figure 7b) was below 3% for all scenarios. More than 75% of high-

income households had%HI less than 4.6%, a threshold that represents one 8-hour

work day spent on water services, showing nearly universal water affordability for

high-income households. For low-income households, however, water is unaf-

fordable for more than 50% of households in all scenarios. In the Base scenario,

water services are unaffordable for half of the low-income households. In all other

scenarios, the number of low-income households facing water unaffordability in-

creases, and, in the TWA+PM scenario, nearly 75% of low-income households

face water unaffordability.

For low-, and high-income households (Figures 7a and b, respectively), pre-
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Figure 6: The total cost of water over the 180-day simulation for (a) low-income (lower 20th per-

centile) and (b) high-income (upper 80th percentile) households.

vention measures and tap water avoidance alone did not increase the %HI signif-

icantly. However, for low-income households, prevention measures and tap water

avoidance combined to increase %HI to unaffordable levels. For nearly 75% of

low-income households, the %HI exceeded one 8-hour day of working at mini-

mum wage (%HI = 4.6%), a commonly cited affordability threshold (Cardoso and

Wichman, 2022). The emergent effect of increased demands with the adoption of

prevention measures and tap water avoidance due to poor water quality demon-

strates the complex interactions between different social phenomena.
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Figure 7: Water affordability, %HI, for (a) low-income (lower 20th percentile) and (b) high-income

households (upper 80th percentile). Red-dashed line represents 4.6%or the%HIwhere a household

must spend one 8-hour day’s worth of income on water services.
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4.4. Sensitivity Analysis: Tap Water Avoidance for Drinking, Cooking, and Hy-

giene End Uses

The sensitivity of the results to using tap water for different end uses was tested

through a set of simulations. For the simulations reported above, when agents

choose to avoid tap water, they use bottled water for drinking, cooking, and hy-

giene. Sensitivity analysis tests results when agents use tap water for only one end

use (drinking, cooking, or hygiene) and use bottled water for two other end uses.

Water affordability is reported and compared with a simulation in which agents do

not use tap water for any of the end uses, but use bottled water for each end use

(shown as None in Figure 8). The %HI for low-income households is not sensitive

to changes in individual end uses (Figure 8). The median value does not change

when tap water is used for individual end uses. The only significant difference is

a reduction in the maximum %HI observed when tap water is used for cooking.

This is because the amount of water used for cooking is greater than the amount

of water used for drinking and hygiene (Equations 3, 4, and 5). When agents use

tap water for cooking instead of buying bottled water, the cost of water decreases

as well as the %HI.

4.5. Sensitivity Analysis: Industrial Water Demand

The amount of demand that is exerted at industrial facilities may not be re-

duced when agents are not present. Industries that are high water consumers, such

as the beverage industry, may continue to exert high water demands when only a

skeleton crew is present. Sensitivity analysis was conducted on the amount of de-

mand at industrial nodes that is attributed to the presence of agents. This analysis

tests degradation of water quality and the adoption of TWA behaviors when indus-

trial water demands stay high during periods of social distancing. The percent of
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Figure 8: Water affordability, %HI, for (a) low-income (lower 20th percentile) and (b) high-income

households (upper 80th percentile) for scenarios when agents use tap water (do not use bottled

water) for drinking, cooking, and hygiene. Red-dashed line represents 4.6% or the %HI where a

household must spend one 8-hour day’s worth of income on water services.
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the demand that depends on the number of agents is varied in a set of five simu-

lations (Figure 9). Scenarios represent the percentage of industrial demand that is

attributed to the number of agents at each node, and the remaining demand exerted

at that facility remained constant. In the original ABM formulation (TWA+PM in

Figure 9), all of the demand attributed to an industrial node is dependent on the

number of agents at that node at a given time step. Scenarios TWA+PM-N refer to

scenarios where N% of industrial node demand is affected by the number of agents

at the node. The TWA+PM-0 scenario represents industrial buildings with no or

negligible demand associated with agent locations. As the percentage of industrial

demand associated with agents is reduced, the total industrial demand increases.

This increase in industrial demand decreased water age at surrounding residential

nodes, reducing the %HI in the system. The median %HI for low-income house-

holds remained above the 4.6% affordability threshold for increasing volume of

demands at industrial facilities, showing a weak sensitivity of %HI on industrial

demand. These results imply that residential water age and%HI is not solely driven

by increases in industrial water age, and that more complex spatial dynamics are

occurring in the network.

5. Discussion

5.1. Assessing Equitable Access to Affordable Drinking Water

The cost of water as a percentage of income (%HI) is used as the equity metric

in this research and is calculated at each household using income and the total cost

of tap and bottled water. This approach is similar to previous research (Teodoro,

2018; Teodoro and Saywitz, 2020; Onda and Tewari, 2021; Cardoso and Wich-

man, 2022), but includes the cost of bottled water and does not make an implicit
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Figure 9: Water affordability, %HI, for (a) low-income (lower 20th percentile) and (b) high-income

households (upper 80th percentile). Scenarios represent the percentage of industrial demand that

is attributed to the number of agents at industrial nodes. Red-dashed line represents 4.6% or the

%HI where a household must spend one 8-hour day’s worth of income on water services.
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assumption on per capita water use. Previous studies used a set per capita volume

of 50 gallons per capita per day (GPCD) (Teodoro, 2018; Teodoro and Saywitz,

2020; Onda and Tewari, 2021; Cardoso and Wichman, 2022), whereas this re-

search calculates water use for each household using a bottom-up approach based

on end uses. The assumption of 50 GPCD represents water necessary to meet

basic needs and may under-estimate %HI. Our approach provides a more real-

istic interpretation of household water expenditure beyond meeting basic needs,

potentially providing a more realistic representation of water affordability for low-

income households. Teodoro and Saywitz (2020) in an update to a previous work

(Teodoro, 2018), present a mean affordability ratio for households in the lower

20% by income, 𝐴𝑅20, of 12.42 for 𝑛 = 399 water utilities. The 𝐴𝑅20 metric is

the ratio of the basic water service cost to disposable household income and better

represents household-level affordability, compared with the utilities system-level

financial capability (Davis and Teodoro, 2014). Although not directly compara-

ble, the median %HI values for low-income households are reported here as 4.6 -

7%, which are similar to the mean 𝐴𝑅20 of 12.42. The median %HI values would

increase if they are calculated using disposable income instead of total household

income. Cardoso and Wichman (2022) reported that 8.4 - 14.2% of households

exceed an affordability threshold of 4.5% at per capita volumes of 40 - 75 GPCD.

In this research, 12.5% of households exceed a threshold of 4.5% in the Base sce-

nario and 25.5% of households exceeded 4.5% in the TWA+PM scenario. The

Base scenario falls within the range reported by Cardoso and Wichman (2022),

but the TWA+PM scenario exceeds the range. The increased populations above

the affordability threshold of 4.5% is likely caused by the higher demand volumes

used in this research and the inclusion of bottled water buying in household water
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expenditure. To our knowledge, bottled water buying has not been included in pre-

vious studies, yet it represents an expenditure on water that is deemed necessary

for many households (Doria, 2010).

Calculating %HI at each household provides new insight into how changes in

the hydraulic system, such as poor water quality, impact the ability of low-income

households to afford water services. ABMs are uniquely suited to address this con-

cern by modeling individual households with diverse income values representative

of the target population. COST-ABM, developed in this research, generates house-

hold level metrics attributable to spatially unique households that interact with

the physical hydraulic network, which could provide greater depth to national and

global water distribution equity studies (Cardoso and Wichman, 2022; Teodoro,

2018; Hutton, 2012).

5.1.1. Limitations

BecauseMicropolis is a virtual city, data that would geospatially locate income

and ethnicity are not available. The spatial intersection of demographic character-

istics with water quality hot spots could potentially lead to different equity impacts

than predicted here. Spatial differences in income from inequitable practices such

as redlining can lead to unpredicted spatial changes to affordability. New research

is needed to apply COST-ABM for real-world cities, assess equity impacts, and val-

idate the framework and modeling approaches using measured data. Other work

has calculated the cost of water based on disposable income, and COST-ABM can

be updated to use other affordability metrics in analysis (Teodoro, 2018).
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5.2. Modeling Tap Water Avoidance Behaviors

Tap water avoidance behaviors are modeled in COST-ABM to represent that

as water quality deteriorates, individuals choose to buy bottled water as an alterna-

tive to tap water. This research applies the assumption that water quality is linked

to water age. Previous studies have made a qualitative connection between water

age and water quality, reporting water quality degradation with increased water

age (Machell and Boxall, 2014, 2012; Blokker et al., 2016; USEPA, 2002). This

framework uses thresholds on water age to represent water quality degradation and

trigger the adoption of tap water avoidance behaviors. Because there is a lack of

research that has quantitatively linked water quality thresholds or water age thresh-

olds with bottled water buying behaviors, thresholds were selected using conserva-

tive engineering judgment. COST-ABM is a novel modeling approach to connect

water quality with tap water avoidance behaviors for drinking water systems.

5.2.1. Limitations

New research can model water quality explicitly to capture the fate and trans-

port of specific drinking water constituents, such as the decay of chlorine and chlo-

ramine (Ricca et al., 2019), and their interaction with microbes. New research is

needed to fully develop and demonstrate models using, for example a multi-species

extension (MSX) for EPANET, that simulate spatial and temporal changes to water

quality constituents in a water distribution system.

While research has demonstrated that organoleptic compound formation is as-

sociated with poor water quality (Doria et al., 2009; Font-Ribera et al., 2017),

further research is needed to quantitatively link specific water quality parameters

with organoleptic compounds and the formation of organoleptic compounds with

tap water avoidance behaviors. Previous work has shown that individuals make the
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decision to buy bottled water based on many factors including not just organolep-

tics (taste, odor, and color), but also trust in the water utility and risk perceptions

related water quality (Doria, 2010; Saylor et al., 2011; Anadu and Harding, 2000).

These factors have been shown to vary considerably with demographic groups and

affect the use of tap water (Hobson et al., 2007; Scherzer et al., 2010; Doria, 2010;

VanDerslice, 2011; Gorelick et al., 2011; Hu et al., 2011; Huerta-Saenz et al., 2012;

Balazs and Ray, 2014; Regnier et al., 2015; Hanna-Attisha et al., 2016; Pierce and

Gonzalez, 2017; Javidi and Pierce, 2018; Schaider et al., 2019; Fedinick et al.,

2019). Future work can also include risk perception modeling for different demo-

graphic groups and capture tap water avoidance behavior decision-making .

This research modeled demands and demand changes at buildings as a diurnal

pattern, rather than the aggregation of end uses at fixtures by individuals shar-

ing a home or non-residential building. Unique demand patterns and changes to

demands during working-from-home periods may be captured by considering per-

sonal end uses, or water consumption at fixtures specific to each individual person.

For example, seasonal demands associated with outdoor water use are not mod-

eled in the formulation presented here. Demands can change drastically between

seasons, with major peaks in summer time demands caused by outdoor water use,

and working-from-home scenarios could result in more gardening and outdoor wa-

ter use. For households that worked from home, appliances such as dishwashers

and washing machines could be used during working hours and would contribute

unevenly to water use profiles. This research assumed a change in demands when

50% of agents sharing a building work from home. Simulating personal end uses

for agents would allow more descriptive simulation of demand changes. New data

is needed to characterize personal end uses for individuals in a shared household
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during pandemic and post-pandemic periods (Vizanko et al., 2025) and relate per-

sonal beliefs around water uses and social distancing to changes in water demands

(Berglund et al., 2025).

Other tap water avoidance behaviors can be included in future research. This

research assumes that COVID-19 prevention measures do not influence tap water

avoidance behaviors. Drinking, cooking and teeth brushing rates may be changed

when individuals practice social distancing behaviors, and those reactions can be

included in the agent behaviors. The model that was formulated here assumes

that consumers do not use tap water for drinking, cooking, and hygiene once they

have adopted tap water avoidance behaviors. New research is needed to explore

how tap water avoidance behaviors are abandoned and to integrate those behav-

iors in COST-ABM. Park et al. (2023) reported higher intake of sugar-sweetened

beverages when individuals perceive bottled water as safer than tap water. Park

et al. (2023) also found that these perceptions are race and ethnicity dependent,

affirming the need to address sociodemographic differences in future work. Other

research can explore tap water avoidance behaviors that seek sugar-sweetened be-

haviors and assess the health effects of consuming or avoiding tap water.

5.3. Agent-based Modeling to Assess Equitable Access to Affordable Water

COST-ABM is a bottom-up framework that assesses water equity as the cost

of water as a percent of income based on water quality and tap water avoidance be-

haviors. The dynamics that lead to inequities are evident in literature (Javidi and

Pierce, 2018) but have not been directly measured and reported. Without research

that reports individual household water quality sampling and tap water avoidance

behaviors, COST-ABM is an important step in understanding and mitigating in-

equity in community water systems. COST-ABM is readily scalable to other hy-
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draulic networks that represent real cities. The data required to apply COST-ABM

to a new location include the cost of water, a hydraulic model of the pipe network,

and income statistics, such as Table S1901 from the ACS.

Micropolis is a virtual application, but represents a hydraulically complex net-

work with similarities to common practices seen in small towns, and some lessons

that emerge in this research can apply generally. For example, Micropolis has a

core of commercial and industrial nodes that represent centralized common spaces

such as government buildings, restaurants, clinics, and schools, which reflects a

common urban planning concept. In this application, commercial water age de-

creased despite a decrease in demand, which may be a common and generalizable

phenomenon in cities built with a layout similar to Micropolis.

Previous work developed ABM approaches specifically for the virtual city of

Micropolis to study contamination response (Kadinski et al., 2022a) and social

distancing (Vizanko et al., 2024b). This research adds a new socioeconomic layer

to Micropolis that incorporates both household incomes and tap and bottled water

cost simulation. The population of Micropolis was modeled after a small, rural

U.S. city that has a population with below average income and has experienced

violations of the Safe Drinking Water Act. Enhancing the Micropolis dataset with

household income and the cost of water allows new analysis of equitable outcomes

that can be included across future applications ofWDS infrastructuremanagement.

Future work can further enhance the sociodemographic layers with race and eth-

nicity. Enhancing these datasets facilitates new analysis of environmental justice

in decision-making for water infrastructure management.
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5.3.1. Limitations

Each simulation of COST-ABMwas executed in parallel on a 40-core machine

with an average runtime of 3.25 hours. High computational requirements can pose

a potential challenge for utilities in applying COST-ABM. The results presented

here were executed over a 180-day timeline to capture changes in the transmission

of COVID-19 and social distancing behaviors. Future work can reduce runtime

by simulating a snapshot of social distancing and demand shifting behaviors to

assess water quality and the cost of water at pre-determined points in a pandemic

or unfolding hazard.

COST-ABMcan be applied to explore the performance of infrastructure changes

that are designed to improve water quality at hotspots through operational changes

such as hydrant flushing or tank optimization. Capital projects, such as correcting

oversized pipes, adding pipes in areas with stagnation concerns, or adding wa-

ter sources can be assessed using COST-ABM. Policy changes can encourage tap

water consumption through household water filtration system rebates, tap water

education programs, and community engagement that builds trust between water

utilities and the community, and these mechanisms can be implemented in COST-

ABM.

6. Conclusion

This research presents COST-ABM, which quantifies the equity and afford-

ability impacts of COVID-19 social distancing and tap water avoidance behav-

iors. COST-ABM incorporates COVID-19 social distancing behaviors that cause

spatio-temporal changes in water quality. Household perceptions of water qual-

ity lead to decisions to adopt tap water avoidance behaviors that reduce tap water
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demand. The cost of water for each household is calculated including the cost of

buying bottled water due to poor water quality. Spatio-temporal changes in wa-

ter quality, driven by COVID-19 social distancing, caused bottled water buying

behavior that increased the average household cost of water. The combination

of COVID-19 social distancing behaviors and tap water avoidance behaviors led

to an emergent reduction in household water affordability for an illustrative case

study. These findings have not been established in other research studies to date,

though the modeling framework is based on dynamics that have been described

and documented in numerous research studies. Results demonstrate emergence of

water equity, that is, the cost of water as a percentage of income, under scenarios

that combine social distancing and tap water avoidance is not equal to the sum of

impacts due to individual scenarios of social distancing and tap water avoidance

alone. Increases in household water cost disproportionately led to a decrease in

water affordability for low-income households.

COST-ABM is the first to assess equity in anABM that tightly couples COVID-

19 transmission, social distancing, and WDS hydraulic performance. The ABM

measures equity using the cost of water as a percentage of household income that

is calculated at each household, which offers increased specificity when assess-

ing water affordability for low-income households. COST-ABM can be applied

in future work to not only assess (in)equities in WDS, but develop management

strategies to address inequities through policy and operational changes that will

improve water affordability for all consumers.
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Appendix A. Process Scheduling Details

The following descriptions for StepsH1-H5 andD1-D5 are adapted fromVizanko

et al. (2024b).

Step H1. Agentsmove between residential and non-residential nodes. Agentsmove

between nodes based on predefined node capacities and node type re-

quirements. Agents are assigned to move to and from non-residential

nodes based on an hourly total capacity at each non-residential node.

Step H2. Agents update COVID-19 status indicators. Agents update COVID-19

status indicators, which represent the number of hours an agent spends

in the exposed, infected, severe, and symptomatic stages (𝑡𝑒𝑥𝑝, 𝑡𝑖𝑛 𝑓 , 𝑡𝑠𝑒𝑣,

and 𝑡𝑠𝑦𝑚𝑝, respectively).

Step H3. Agents transmit COVID-19. Infected agents expose susceptible agents

when they occupy the same node. When an infected agent moves to

a new node, up to 10 susceptible agents at the new node are exposed

based on the node’s exposure rate (𝑒𝑟𝑒𝑠 for residential nodes 𝑒𝑛𝑟 for non-

residential nodes in Table B.1).

Step H4. Agents update mass media exposure. Agents receive information from

TV and radio based on probabilistic estimates that they use each form of

media at each hour of the day (Rogers and Sorensen, 1991; Shafiee and
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Zechman, 2013) (Table SI.2). The mass media exposure (𝐶𝑚𝑒𝑑) is a bi-

nary number that is changed from 0 to 1 once an agent receives informa-

tion about COVID-19 at any time step, based on probabilistic behaviors

to use radio and TV.

Step H5. Agents exert water demand. The hourly demand at each node is calcu-

lated based on the number of agents at each node, as follows.

𝐵𝑑′𝑡,𝑁 =
𝐾𝑁

𝐾𝑁,𝑐𝑎𝑝
× 𝐵𝑑𝑡,𝑁 (A.1)

where 𝐵𝑑′𝑡,𝑁 is the new demand for node 𝑁 at time 𝑡, 𝐾𝑁 is the number

of agents at node 𝑁 , 𝐾𝑁,𝑐𝑎𝑝 is the capacity of node 𝑁 , and 𝐵𝑑𝑡,𝑁 is the

base demand.

The following steps are completed every 24 hours:

Step D1. Agents update COVID-19 status. Agents update COVID-19 status state

variables (𝑆, 𝑆𝑠𝑦𝑚𝑝, and 𝑆𝑖𝑛 𝑓 ) based on their progression through disease

stages. Once the time in a stage exceeds an agent’s threshold for that stage

(e.g., 𝑡𝑒𝑥𝑝 > 𝜏𝑒𝑥𝑝, Table B.1), the agent updates its COVID-19 status (e.g.,

𝑆 = 𝑖𝑛 𝑓 𝑒𝑐𝑡𝑒𝑑).

Step D2. Agents update personal experience with COVID-19. Once an agent en-

ters the infectious stage (𝑆 = 𝑖𝑛 𝑓 𝑒𝑐𝑡𝑒𝑑), the agent updates the personal

COVID-19 status (𝐶𝑝𝑒𝑟) from ”no” (value of 1), to ”doctor confirmed

and am still infected” (value of 9) (Vizanko et al., 2024b).

Step D3. Agents update friends and family COVID-19 status. An agent updates

the friends and family COVID-19 status (𝐶 𝑓 𝑓 ) when peer agent enters

the infectious stage. The value (𝐶 𝑓 𝑓 ) can increase up to 7 to represent the
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number of peers in an agent’s network that are infected. A value of seven

corresponds to survey responses that the person is ”very much affected”

by friends or family testing positive or dying from COVID-19 (Vizanko

et al., 2024b).

Step D4. Agents update decision to adopt prevention measures. BBN models are

applied to calculate the probability of adopting each preventionmeasures

based on mass media exposure, personal COVID-19 status, and friends

and family COVID-19 status (𝐶𝑚𝑒𝑑 , 𝐶 𝑓 𝑓 , and 𝐶𝑝𝑒𝑟 , respectively). Pre-

vention measures include working from home, dining out less, grocery

shopping less, and wearing PPE and bottled water buying behaviors are

drinking bottled water, cooking with bottled water and using bottled wa-

ter for hygiene. Refer to previous work for more information on preven-

tion measures (Vizanko et al., 2024a,b).

Step D5. Agents update demand patterns. Agents that select to work from home,

dine out less, or grocery shop less update their demand patterns from

a typical diurnal pattern to a pattern that expresses demands uniformly

across daylight hours (standard and COVID-19 demand patterns in Table

SI.1).

Appendix B. State Variables and Parameters
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Table B.1: Agent parameters are used to model exposure to COVID-19, communication, and

mobility in the network. LN(𝑥, 𝑦) represents a log-normal distribution with mean 𝑥 and standard

deviation 𝑦.

Parameter Symbol Value

Residential exposure rate 𝑒𝑟𝑒𝑠 0.051

Non-residential exposure rate 𝑒𝑛𝑟 0.011

Probability of listening to ra-

dio

𝑃𝑅 Table SI.2

Probability of watching TV 𝑃𝑇𝑉 Table SI.2

Work node 𝑁𝑤𝑜𝑟𝑘 All industrial nodes

Home node 𝑁ℎ𝑜𝑚𝑒 All residential nodes

Exposed stage threshold

(days)

𝜏𝑒𝑥𝑝 ∼ LN(4.5, 1.5)1

Symptomatic stage thresholds

(days)

𝜏𝑠𝑦𝑚𝑝
∼ LN(1.1, 0.9) (to severe stage)1

∼ LN(8.0, 2.0) (to recovered stage)1

Infected stage threshold (days) 𝜏𝑖𝑛 𝑓 𝑡𝑠𝑦𝑚𝑝 + 𝑡𝑠𝑒𝑣 + 𝑡𝑐𝑟𝑖𝑡

Severe stage thresholds (days) 𝜏𝑠𝑒𝑣
∼ LN(1.5, 2.0) (to critical stage)1

∼ LN(18.1, 6.3) (to recovered stage)1

Critical stage thresholds

(days)

𝜏𝑐𝑟𝑖𝑡
∼ LN(10.7, 4.8) (to dead stage)1

∼ LN(18.1, 6.3) (to recovered stage)1

1 values reported by Kerr et al. (2021).
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Table B.2: Agent state variables.

State Variable Symbol Value

COVID-19 status 𝑆 [susceptible, exposed, infected, re-

covered, dead]

Symptomatic status 𝑆𝑠𝑦𝑚𝑝 [Symptomatic, asymptomatic]

Infected status 𝑆𝑖𝑛 𝑓 [mild, severe, critical]

Personal COVID-19 status

(BBN input)

𝐶𝑝𝑒𝑟 ∈ [1, 9]

Friends and Family COVID-

19 status (BBN input)

𝐶 𝑓 𝑓 ∈ [1, 2, 3, 4, 5, 6, 7]

Mass media exposure (BBN

input)

𝐶𝑚𝑒𝑑 ∈ {0, 1}

Time in exposed stage (days) 𝑡𝑒𝑥𝑝

Time in symptomatic stage

(days)

𝑡𝑠𝑦𝑚𝑝

Time in infected stage (days) 𝑡𝑖𝑛 𝑓

Time in severe stage (days) 𝑡𝑠𝑒𝑣

Time in critical stage (days) 𝑡𝑐𝑟𝑖𝑡

WFH decision 𝐷𝑊𝐹𝐻 [Not WFH, WFH]

Dine out less decision 𝐷𝑑𝑖𝑛𝑒 [Dine out, dine out less]

Grocery shop less decision 𝐷𝑠ℎ𝑜𝑝 [Grocery shop, grocery shop less]

PPE decision 𝐷𝑃𝑃𝐸 [Wear PPE, not wear PPE]
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I. Daily demand patterns

Table SI.1: Residential demand patterns.

Hour Standard

Residential

Pattern

COVID-19

Residential

Pattern
0 0.55 0.51
1 0.55 0.41
2 0.58 0.40
3 0.67 0.47
4 0.85 0.67
5 1.05 0.99
6 1.16 1.07
7 1.12 1.05
8 1.15 1.13
9 1.10 1.21
10 1.02 1.26
11 1.00 1.31
12 1.02 1.28
13 1.10 1.22
14 1.20 1.14
15 1.35 1.11
16 1.45 1.15
17 1.50 1.21
18 1.50 1.25
19 1.35 1.32
20 1.00 1.21
21 0.80 1.06
22 0.70 0.88
23 0.60 0.67
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II. TV and Radio Probabilities

Table SI.2: Probabilities of an agent receiving information from radio (𝑃𝑅) and TV (𝑃𝑇𝑉 ) for each

hour of a given day.

Daily Time Step 𝑃𝑅 𝑃𝑇𝑉

0 0.463 4.626
1 0.577 0.439
2 0.35 0.226
3 0.35 0.215
4 0.575 0.006
5 8.342 0.366
6 20.76 4.405
7 24.794 17.15
8 4.436 12.898
9 4.597 8.847
10 0.52 0.343
11 4.49 0.22
12 8.515 4.846
13 8.622 0.151
14 8.678 0.421
15 12.711 0.656
16 12.328 0.869
17 8.251 15.769
18 4.165 21.366
19 0.243 17.037
20 0.35 27.649
21 0.342 35.729
22 0.123 31.951
23 0.233 9.203
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III. BBN Figures and Tables

Table SI.3: Variables used as input to BBN models include demographics, perceptions,

and PMT constructs. Question responses are included in the question column

in brackets and Likert scale answers are denoted by a number representing

the number of available responses (Likert responses are presented in detail

in Table SI.4).

Trust-Family How much do you trust people in your family? [5]

Trust-Neighbors How much do you trust people in your neighbour-

hood? [5]

Trust-Coworkers How much do you trust people you work or study

with? [5]

Trust-Language How much do you trust people who speak a different

language from you? [5]

Trust-Strangers How much do you trust strangers? [5]

Trust-Immigrants How much do you trust immigrants? [5]

Trust-Medical staff How much do you trust medical doctors and nurses?

[5]

Trust-Scientists How much do you trust scientists? [5]

Variable Question

Continued on next page
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Table SI.3: Variables used as input to BBN models include demographics, perceptions,

and PMT constructs. Question responses are included in the question column

in brackets and Likert scale answers are denoted by a number representing

the number of available responses (Likert responses are presented in detail

in Table SI.4). (Continued)

Media-Posters Have you come across information about coronavirus

or COVID-19 from: official public posters. [1: yes, 2:

no]

Media-Social Have you come across information about coronavirus

or COVID-19 from: social media or online blogs from

individuals. [1: yes, 2: no]

Media-Journalist Have you come across information about coronavirus

or COVID-19 from: journalists and commentators in

the media (TV, radio, newspapers). [1: yes, 2: no]

Media-Government Have you come across information about coronavirus

or COVID-19 from: government or official sources

such as websites or public speeches/broadcasts within

the country you are living in. [1: yes, 2: no]

Media-Work Have you come across information about coronavirus

or COVID-19 from: official messages from your place

of work or education. [1: yes, 2: no]

Variable Question

Continued on next page
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Table SI.3: Variables used as input to BBN models include demographics, perceptions,

and PMT constructs. Question responses are included in the question column

in brackets and Likert scale answers are denoted by a number representing

the number of available responses (Likert responses are presented in detail

in Table SI.4). (Continued)

Media-Friends Have you come across information about coronavirus

or COVID-19 from: friends and family. [1: yes, 2:

no]

Media-WHO Have you come across information about coronavirus

or COVID-19 from: World Health Organisation. [1:

yes, 2: no]

Current Worry-Climate How worried are you personally about climate change

at present? [7]

Current Worry-Immigration How worried are you personally about immigration at

present? [7]

Current Worry-Terrorism How worried are you personally about terrorism at

present? [7]

Current Worry-Crime How worried are you personally about crime at

present? [7]

Variable Question

Continued on next page
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Table SI.3: Variables used as input to BBN models include demographics, perceptions,

and PMT constructs. Question responses are included in the question column

in brackets and Likert scale answers are denoted by a number representing

the number of available responses (Likert responses are presented in detail

in Table SI.4). (Continued)

Future Worry-Finances How likely do you think it is that [you (ps) OR your

friends and family in the country you are currently liv-

ing in (fs)] will be directly affected by financial prob-

lems in the next 6 months? [7]

Future Worry-Avoidance How likely do you think it is that [you (ps) OR your

friends and family in the country you are currently liv-

ing in (fs)] will be directly affected by antisocial be-

havior by others in the next 6 months? [7]

Future Worry-Immigration How likely do you think it is that [you (ps) OR your

friends and family in the country you are currently liv-

ing in (fs)] will be directly affected by immigration in

the next 6 months? [7]

Dem-Sex What is your sex? [1: female, 2: male, 3: other, 4:

prefer not to say]

Dem-Age What is your age? [1: 18-24, 2: 25-34, 3: 35-44, 4:

45-54, 5: 55-64, 6: 65+]

Variable Question

Continued on next page
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Table SI.3: Variables used as input to BBN models include demographics, perceptions,

and PMT constructs. Question responses are included in the question column

in brackets and Likert scale answers are denoted by a number representing

the number of available responses (Likert responses are presented in detail

in Table SI.4). (Continued)

Dem-Healthcare Are you a healthcare provider (e.g. doctor, nurse,

paramedic, pharmacist, carer)? [1: yes, 2: no]

Dem-Education Please indicate your highest educational qualification:

[1: no formal above 16 to 5: Masters, 9: doctorate]

Prioritize Society To what extent do you think it’s important to do things

for the benefit of others and society even if they have

some costs to you personally? [7]

COVID-19 Experience Have you ever had, or thought you might have, the

coronavirus/COVID-19? [9: unsure, 8: no, 3: I think

I might have had it but am recovered, 2: I think I might

have it now but not tested, 1: doctor suspected but

tested negative, 4: doctor suspected but no test yet,

5: doctor confirmed and am still infected, 6: doctor

confirmed but now test negative, 7: doctor confirmed

but not been tested again]

Longitude-1 week Howworried were you about coronavirus 1 week ago?

[7]

Variable Question

Continued on next page
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Table SI.3: Variables used as input to BBN models include demographics, perceptions,

and PMT constructs. Question responses are included in the question column

in brackets and Likert scale answers are denoted by a number representing

the number of available responses (Likert responses are presented in detail

in Table SI.4). (Continued)

Longitude-1 month How worried were you about coronavirus 1 month

ago? [7]

Longitude-2 months How worried were you about coronavirus 2 months

ago? [7]

Effect-Financial To what extent have you been affected by the

coronavirus/COVID-19 in the following ways? - I

have experienced financial difficulties as a result of the

pandemic [7]

Effect-Social To what extent have you been affected by the

coronavirus/COVID-19 in the following ways? - I

have experienced social difficulties as a result of the

pandemic [7]

Effect-Mental health To what extent have you been affected by the

coronavirus/COVID-19 in the following ways? - I

have experienced mental health difficulties as a result

of the pandemic (e.g. increased anxiety) [7]

Variable Question

Continued on next page
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Table SI.3: Variables used as input to BBN models include demographics, perceptions,

and PMT constructs. Question responses are included in the question column

in brackets and Likert scale answers are denoted by a number representing

the number of available responses (Likert responses are presented in detail

in Table SI.4). (Continued)

Effect-Friends To what extent have you been affected by the

coronavirus/COVID-19 in the following ways? - I

have friends and family who have tested positive or

died from the virus [7]

SARS Have you personally been affected by a previous sim-

ilar epidemic such as SARS (Severe Acute Respi-

ratory Syndrome), MERS (Middle East Respiratory

Syndrome) or Ebola? [1: yes, 2: no]

General Trust Generally speaking, would you say most people can

be trusted, or that you can’t be too careful in dealing

with people? [7]

Information Have you sought out information specifically about

coronavirus/COVID-19? [1: yes, 2: no]

Scientist Understanding To what extent do you think scientists have a good un-

derstanding of the coronavirus/COVID-19? [7]

Variable Question

Continued on next page
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Table SI.3: Variables used as input to BBN models include demographics, perceptions,

and PMT constructs. Question responses are included in the question column

in brackets and Likert scale answers are denoted by a number representing

the number of available responses (Likert responses are presented in detail

in Table SI.4). (Continued)

Certainty-Knowledge How certain or uncertain do you think the follow-

ing are: - The current scientific knowledge about the

coronavirus/COVID-19? [7]

Certainty-Cases How certain or uncertain do you think the follow-

ing are: - The estimates of the number of cases of

coronavirus/COVID-19 worldwide [7]

Vaccine-Personal If a vaccine were to be available for the

coronavirus/COVID-19 now: - Would you get

vaccinated yourself? [1: yes, 2: no]

Vaccine-Recommend If a vaccine were to be available for the

coronavirus/COVID-19 now: - Would you rec-

ommend vulnerable friends and family to get

vaccinated? [1: yes, 2: no]

Threat Severity (PMT) How much do you agree or disagree with the

following statements? - Getting sick with the

coronavirus/COVID-19 can be serious [5]

Variable Question

Continued on next page
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Table SI.3: Variables used as input to BBN models include demographics, perceptions,

and PMT constructs. Question responses are included in the question column

in brackets and Likert scale answers are denoted by a number representing

the number of available responses (Likert responses are presented in detail

in Table SI.4). (Continued)

Response Efficacy (PMT) To what extent do you feel that the personal actions

you are taking to try to limit the spread of coronavirus

make a difference? [7]

Societal Efficacy (PMT) To what extent do you feel the actions that your coun-

try is taking to limit the spread of coronavirus make a

difference? [7]

Variable Question

IV. Social Distancing Adoption

V. Cost of Water Time Series

VI. Water Age By Residential Node

VII. Velocity Changes
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Table SI.4: Likert scales used for selected questions.

Variable Likert Scale

Trust 1 = Cannot be trusted at all to 5 = Can be trusted a lot

Current Worry 1 = not at all worried to 7 = very worried

Future Worry 1 = not at all likely to 7 = very likely

Cultural Cognition 1 = strongly disagree to 6 = Strongly agree

Prioritize Society 1 = not at all to 7 = very much so

Longitude 1 = not at all worried to 7 = very worried

Effect 1 = not at all affected to 7 = very much affected

General Trust 1 = Can’t be too careful to 7 = Most people can be

trusted

Scientist Understanding 1 = very limited understanding to 7 = very good un-

derstanding

Certainty 1 = very certain to 7 = very uncertain

Country-Affect and Personal-

Sick

1 = strongly disagree to 5 = strongly agree

Threat Severity 1 = strongly disagree to 5 = strongly agree

Response Efficacy and Soci-

etal Efficacy

1 = not at all to 7 = very much
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Table SI.5: Performance of each PM prediction model

PM Accuracy Recall Precision 𝐹1

Work from home 66.5% 47.9% 58.7% 52.8%

PPE 74.4% 60.0% 72.6% 65.7%

Dining out less 95.2% 72.3% 71.2% 82.1%

Shopping for groceries less 69.7% 61.5% 60.9% 64.9%
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Figure SI.1: BBN model is used to in agent decision-making to select working from home. Model

includes demographic and perception variables.
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Figure SI.2: BBN model is used to in agent decision-making to select dining out less. Model

includes demographic, perception, and PMT variables.
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Figure SI.3: BBNmodel is used to in agent decision-making to select grocery shopping less. Model

includes demographic, perception, and PMT variables.
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Figure SI.4: BBN model is used to in agent decision-making to select wearing a mask. Model

includes demographic and perception variables.
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Figure SI.5: Percentage of the population adopting (a) dining out less, (b) grocery shopping less,

(c) working from home, and (d) wearing PPE.
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Figure SI.6: Average household cost of water for (a) TWA and (b) TWA+PM scenarios.
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Figure SI.7: Mean water age by residential node for the final 30 days of simulation. Red dashed line

represents the 150 hour threshold for agents adopt TWA behaviors and the blue triangles represent

the mean value of the data.
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Figure SI.8: Percent change in the mean mains pipe velocities between the first 30 days and final

30 days.
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