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Abstract 9 

The inherent uncertainty in water demand poses significant challenges to water distribution systems'  10 

(WDSs) efficiency and quality. This study introduces a model predictive control framework tailored 11 

for real-time optimal operation of WDSs under uncertain demand and maximum water age constraints 12 

to ensure water quality requirements. The methodology presented utilizes a scenario-based energy-13 

cost optimization approach to account for demand uncertainties. As water age is unmeasurable, a 14 

model linearly related to some measured/observed network variables (e.g., flows, water levels, etc.) is 15 

proposed to infer water age values. Then, a scenario-based mixed-integer linear programming (SB-16 

MILP) problem is formulated and solved repeatedly online to adjust operational strategies for 17 

minimizing energy operation costs while satisfying water age constraints. The outcome of this model 18 

is a feasible operation scheme for all demand scenarios, providing a cost-effective decision that meets 19 

water age limits. The proposed model is tested on a real-world-based test case and validated through a 20 

series of sensitivity analyses. 21 

Plain Language Summary 22 

The uncertainty in water demand makes it hard to maintain the efficiency and quality of water 23 

distribution systems. This study presents a control framework designed for the real-time optimal 24 

operation of these systems, taking into account unpredictable demand and water age requirements to 25 

ensure water quality. The method uses scenario-based optimization to handle demand uncertainties. 26 

Since water age can't be directly measured, the study proposes a model that estimates it based on 27 



certain observable variables in the network. A scenario-based mixed-integer linear programming (SB-28 

MILP) problem is then repeatedly solved online to adjust operational strategies, aiming to minimize 29 

costs while meeting water age requirements. This model provides a practical operation plan for all 30 

demand scenarios, offering a cost-effective solution that adheres to water age limits. The proposed 31 

model is tested on a real-world scenario and validated through various sensitivity analyses. 32 
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Highlights 36 

 The paper presents a real-time control framework for water distribution systems under 37 

demand uncertainty. 38 

 It uses scenario-based optimization to minimize costs and maintain water quality. 39 

 Validation on the C-Town network model effectively performed under varying demand 40 

conditions. 41 

Introduction 42 

Water distribution systems (WDSs) are critical infrastructures that deliver potable water to residential, 43 

commercial, and industrial consumers. Ensuring a continuous supply of high-quality water requires 44 

operators to confront multiple challenges, among the most pressing of which are uncertainties in water 45 

demand, adherence to regulatory requirements, and cost-effective resource allocation. Indeed, water 46 

demand is inherently stochastic, influenced by factors such as diurnal consumption patterns, weather 47 

conditions, and consumer behavior. These fluctuations, coupled with stringent water quality 48 

regulations, complicate the task of maintaining system efficiency and reliability. A primary water 49 

quality concern relates to the control of water age, which is defined as the time water spends within 50 

the distribution network before reaching end-users (Dandy et al., 2013). Water age is a critical 51 

indicator of overall water quality because it is directly tied to the decay of disinfectant residuals and 52 



the formation of disinfection by-products in the network. Consequently, prolonged water age can 53 

result in water that does not meet stipulated safety standards, making effective control strategies for 54 

water age an essential component of modern WDS management (Mala-Jetmarova et al., 2017). 55 

Traditional approaches to WDS operation and management often rely on rule-based methods or 56 

deterministic optimization models that do not explicitly consider the stochastic nature of water 57 

demand. While these methods can be straightforward to implement, they may yield suboptimal 58 

solutions when demand deviates from expected values, thereby undermining both efficiency and 59 

water quality goals. Model-based predictive methods have emerged as a promising alternative for 60 

handling the complexities inherent in large-scale water networks. Among such methods, Model 61 

Predictive Control (MPC) has attracted significant attention due to its capacity to address 62 

multivariable control problems and manage constraints in a systematic manner (Camacho & Bordons, 63 

2007). By predicting the future states of the system, such as tank levels, flow rates, and pressures, 64 

MPC can proactively determine control actions (for pumps, valves, and other actuators) that balance 65 

cost, system reliability, and quality considerations (Salomons & Housh, 2020b; Tang et al., 2014). 66 

Since a future time horizon is considered for dynamic optimization, it benefits both constraint 67 

satisfaction and cost minimization in a dynamic way. For instance, when it is known (from the 68 

statistical point of view) that the demand will considerably decrease in the future, the pump will 69 

decrease the water supply in advance. The amount of the pumping reduction is optimized based on the 70 

model-based prediction, such that the water age will not be higher than its upper bond. To minimize 71 

the operation cost, we would like to pump more water in the off-peak tariff period. For this purpose, 72 

the dynamic optimization will empty the tanks in advance. Otherwise, the water level will be over its 73 

upper bound. 74 

An especially powerful feature of MPC is its ability to incorporate water quality constraints directly 75 

into the decision-making process. For instance, constraints on water age or disinfectant residual can 76 

be formulated as part of the MPC optimization, ensuring that operational decisions meet both quantity 77 

and quality criteria (Cherchi et al., 2015). This approach contrasts with conventional strategies in 78 

which water quality is treated separately or secondarily, often through post-processing checks rather 79 



than real-time control adjustments. Furthermore, many regulatory standards for WDSs emphasize not 80 

just meeting average quality measures but also ensuring that water quality remains within acceptable 81 

limits even under adverse or fluctuating conditions. Consequently, the flexibility nature of MPC make 82 

it an attractive tool for system operators seeking to fulfill regulatory obligations without incurring 83 

excessive operational costs. 84 

One challenge, however, is that MPC, in its basic (deterministic) form, may not be fully equipped to 85 

handle high degrees of uncertainty in demand and water quality parameters. Demand uncertainty is 86 

particularly critical, as deviations in forecasted consumption can lead to suboptimal operation, such as 87 

overfilling or underfilling storage tanks, increased pumping costs, or degraded water quality due to 88 

longer residence times. To address these issues, researchers have proposed scenario-based MPC 89 

frameworks (Bernardini & Bemporad, 2009; Lucia et al., 2013; Maiworm et al., 2015; Xu et al., 90 

2022). Under this paradigm, demand uncertainty is modeled by generating a finite set of possible 91 

demand profiles (or scenarios) over the prediction horizon. These scenarios capture a range of 92 

possible future demand patterns, reflecting the uncertainty inherent in water consumption. While these 93 

scenarios include normal demand variations, it should be noted that extreme conditions, such as 94 

partial system malfunction, fires, etc., are not part of this framework. In such cases, the objective of 95 

system operators focuses on supplying as much of the demand and prioritizing specific zones in the 96 

system rather than energy cost savings. Our approach evaluates the performance of the system by 97 

considering multiple demand scenarios simultaneously, leading to robust operations.  98 

Within each scenario, the model tracks both hydraulic and water quality variables, including water 99 

age. Through a mixed-integer linear programming (MILP) or similar optimization formulation, 100 

scenario-based MPC ensures that the selected control actions are robust, that is, they maintain 101 

acceptable performance across the range of demand scenarios considered (Creaco et al., 2019). 102 

Wytock et al. (2017) demonstrated the effectiveness of scenario-based robust MPC in dynamic energy 103 

management applications, providing a foundation for extending similar methodologies to the water 104 

sector. By addressing uncertainties proactively, scenario-based MPC can balance multiple objectives, 105 



such as minimizing operational costs, maintaining adequate pressure, and controlling water age below 106 

regulatory thresholds. 107 

The concept of water age itself has long been recognized as an essential surrogate for water quality in 108 

distribution systems. Rossman & Boulos (1996) suggested detailing numerical methods for modeling 109 

water quality in complex pipe networks, focusing on the transport and decay of contaminants as well 110 

as the importance of water age in capturing disinfectant residual behavior. In their approach and in 111 

widely used hydraulic solvers such as EPANET (Rossman et al., 2020), water age is typically treated 112 

as a conservative tracer starting at zero at each source, then increasing over time as it travels through 113 

pipes and mixes at junctions and tanks. This simulation framework has made it possible for 114 

subsequent studies to incorporate water age into optimization and control algorithms.  115 

Indeed, recent research has explored the simultaneous minimization of water age and other system 116 

performance metrics. Korder et al. (2024) proposed an optimization approach aimed at reducing both 117 

water age and pressure through strategic placement and operation of pressure reducing valves. Such 118 

integrative approaches highlight the value of considering multiple objectives (e.g., pressure, energy 119 

cost, and water age) in a single optimization framework, especially given that reducing excessive 120 

pressure may also mitigate leakage but could inadvertently increase residence times in certain parts of 121 

the network. Similar trade-offs arise in many real-world networks, necessitating sophisticated 122 

modeling and control techniques. 123 

Beyond demand uncertainties, variability in water quality parameters, including initial disinfectant 124 

concentrations, decay kinetics, and by-product formation rates, can further complicate operational 125 

decisions. Basupi & Kapelan (2015) highlighted the importance of robust system design for future 126 

demand scenarios by stressing resilience and flexibility. Such principles can be extended to 127 

operational control, where real-time adjustments must consider not only shifting demands but also the 128 

evolving chemical and biological processes in the water. Roach et al. (2016) compared robust 129 

optimization with info-gap methods in water resource management, offering insights into how 130 

different uncertainties can be addressed depending on the complexity of the system and the tolerance 131 



for risk. Ultimately, the goal is to ensure reliability and service quality even under the broadest 132 

plausible range of operating conditions. 133 

EPANET (Rossman et al., 2020) and other hydraulic solvers have proven invaluable in capturing 134 

water age dynamics. EPANET’s conservative tracer model assumes complete mixing in tanks, which 135 

can sometimes underestimate local water age gradients but remains a practical compromise for real-136 

time or near-real-time computations. As water moves from sources to consumers, the age 137 

accumulates, and any deviation from the assumed demand schedule affects the predicted water age 138 

distribution (Braun et al., 2020). When demand is higher than expected, turnover in the network 139 

occurs more rapidly, potentially lowering water age, whereas lower-than-expected demand can lead to 140 

extended residence times. Hence, the uncertainty in demand manifests directly as uncertainty in the 141 

water age. By employing a scenario-based approach, operators can envision both “high-demand” and 142 

“low-demand” situations as well as intermediate conditions, creating an envelope within which water 143 

age values fluctuate. The control algorithm then identifies a robust operational strategy (e.g., pump 144 

schedules and valve settings) that maintains water quality within acceptable limits across all 145 

scenarios. This robust approach contrasts with deterministic optimization, which might only target an 146 

expected demand profile and fail to account for variability. In real-world operations, such flexibility is 147 

key for compliance with water quality regulations, especially when consumer demand exhibits sudden 148 

changes or seasonal shifts. 149 

Building on these foundational insights, the present study proposes a scenario-based Linear Model 150 

Predictive Control (LMPC) framework that explicitly addresses demand uncertainty while controlling 151 

water age within acceptable bounds. The framework begins with the development of a linear model 152 

that relates observable states (e.g., tank levels, pressures, and flow rates) to water age, serving as an 153 

inferential sensor. In real time, this sensor is updated based on actual measurements, allowing water 154 

age to be predicted over a future horizon (e.g., 24–48 hours). Scenarios capturing different plausible 155 

demand profiles is then constructed, and a scenario-based Mixed-Integer Linear Programming (SB-156 

MILP) problem is formulated. The solution to this problem yields control actions (pump switches, 157 

valve settings, etc.) that minimize operational costs subject to water age constraints for each scenario. 158 



The linear structure of the model ensures computational tractability, making it suitable for time-159 

critical applications where decisions must be made with minimal delay. 160 

To validate the proposed scenario-based LMPC, this study applies it to the C-Town benchmark 161 

network (Ostfeld et al., 2012). By leveraging EPANET’s hydraulic and water quality simulation 162 

capabilities, as a surrogate to the real WDS, the study demonstrates how real-time adjustments in 163 

pumping schedules and valve manipulations can keep water age within acceptable thresholds across 164 

multiple demand scenarios. The results confirm that the methodology not only reduces operational 165 

costs but also achieves robust adherence to water quality standards, thus underscoring its potential for 166 

deployment in full-scale water utilities. 167 

In summary, the integration of MPC with scenario-based optimization offers a sophisticated and 168 

robust framework for real-time WDS operation under uncertain demand and water quality conditions. 169 

Water age serves as a critical surrogate for water quality, linking disinfectant residual decay and by-170 

product formation with system hydraulics. By proactively addressing the stochastic nature of demand, 171 

scenario-based LMPC ensures that water age remains within acceptable limits, even under shifting 172 

consumption patterns. This paper’s contribution lies in unifying these concepts into a single, 173 

linearized control structure and validating the approach through a comprehensive real-world case 174 

study. Such methodology paves the way for broader industry adoption, as water utilities increasingly 175 

seek data-driven, cost-effective solutions that guarantee safe and reliable service to consumers. 176 

The remainder of this paper is organized as follows. The methodology section details the water age 177 

estimation modeling and the proposed MPC framework. The case study and results section presents 178 

the application of the framework to the C-Town network and discusses its outcomes. Finally, the 179 

conclusion section summarizes our findings and suggests directions for future research. 180 

 181 

Methodology 182 

Water age estimation 183 



Water quality models, including water age, are based on the principles of conservation of mass 184 

coupled with reaction kinetics (Rossman et al., 1993; Rossman & Boulos, 1996). Both principles are 185 

governed by nonlinear equations and require the hydraulics to be solved first. With the aim of 186 

preserving a linear model for the purpose of a real-time application, we propose a multivariate 187 

regression model for water age estimation, Eq. (1). 188 

T

jwa B X            (1) 189 

where, jwa  is the water age at junction j  for a given time, X  is a vector of observations of state 190 

variables (e.g., water levels at tanks, flows, etc.) associated with junction j , and B  is a vector of 191 

parameters containing the regression coefficients. In this paper, a junction can also be a tank. A least-192 

squares method is employed to determine the optimal coefficient values by minimizing the sum of 193 

squared residuals. That is, for each junction of interest, we formulate the quadratic optimization 194 

problem depicted in Eqs. (2)-(3). 195 

 
2

min
t

sim est

twa wa t T           (2) 196 

s.t., 197 

 , ,est

t p f twa b x t T p P            (3) 198 

where, 
sim

twa  is the water age which is provided by simulation using EPANET at time t , 
est

twa  is 199 

the estimated water age at time t  (for the given junction), T  is the time span of the optimization 200 

period ( t T ), pb  is the p -th regression coefficient ( b B ), ,p tx  is the p -th observation variable 201 

at time t , and P  is the set of regression coefficients ( p P ). It should be noted that this formulation 202 

does not restrict the estimated water age to be positive to avoid over-constraining the problem. This is 203 

because we are interested in the higher values of the water age, not around zero. At some junctions, as 204 

will be shown for the test case, the water age time series has sharp peaks and, solving problem Eq. (3), 205 

large residuals will remain at the peak points. Therefore, for these junctions we add a second stage of 206 



a weighted least-squares optimization. The time based weights, tk , are calculated using the first stage 207 

results, Eq. (4). 208 

t

sim est

t tk wa wa            (4) 209 

Then, the first stage objective function with Eq. (2) is replaced as by Eq. (5). 210 

 
2

min
t

sim est

t tk wa wa t T           (5) 211 

Noteworthy is that tk  is calculated with the results of the first stage while the error in the water age in 212 

Eq. (5), t

sim est

twa wa
, is calculated during the second stage. Although the two-stage optimization 213 

problem is nonlinear, the number of regression parameters is relatively small. As will be seen in our 214 

case study, less than ten regression terms are usually enough for water age estimation. As a result, we 215 

obtain Eq. (3) as a model to estimate water age at junctions in the network, based on the online 216 

observation of the variables X . This makes it possible to design a model-based optimal control of 217 

WDSs in which a direct measurement of water age is not available. 218 

Formulation of the scenario-based linear MPC  219 

In this study, the aim of optimal operation is defined, under demand uncertainty, as cost minimization 220 

of WDS, i.e. to minimize the energy costs of the pump stations and meanwhile restrict the water age 221 

in a user-defined range by controlling pumps and valves. We generate several demand scenarios to 222 

describe the demand uncertainty. Therefore, the objective function, Eq. (6), comprises of two terms: 223 

the first is the energy operating cost of the system and the second is a penalty term to minimize the 224 

water age deviation in the system from the required values. 225 

, , , , ,min
s c t

s

n n

s c s c t j t

n SCN t T s S c C j J t T

u q e EC t M wa
     

             (6) 226 

The first term loops over the set of demand scenarios ( n SCN ), time ( t T ), pump stations ( s S227 

), and pump combinations within each pump station ( sc C ). T  is the user-defined prediction 228 



horizon. 
, ,s c t

nu  is a decision variable determining whether a specific pump combination is operating or 229 

not. ,s cq  is the flow of pumping combination c  of station s , ,s ce  is its specific energy, tEC  is the 230 

electricity cost (known tariff from the energy market) at time t , and t  is the time step duration. 231 

Thus, the operation cost is a linear function of the decision variable u  which can be integer or 232 

continuous, expressed as follows: 233 

  int0,1u t T             (7) 234 

int0 1u t T T              (8) 235 

, ,
1 , ,

s c t

n

s

t T

u s S c C n SCN


            (9) 236 

This decision variable u , in its integer form, Eq. (7), represents whether a specific pumping 237 

combination is operated ( 1u  ) or not ( 0u  ) during time step t . While in its continuous form, Eq. 238 

(8), it represents the fraction of time in which the pumping combination is operating during time step 239 

t . The set of time steps, in which u  as an integer variable is 
intT . The size of 

intT  is referred to as 240 

the binarization level (Salomons & Housh, 2020a). A binarization level of one means that only in the 241 

first-time step the decision variables are integer while for the rest of the time steps they are 242 

continuous. The aim of introducing the binarization level is to relax the MILP problem to reduce the 243 

computational burden. The regionalization of the binarization level approach is that, in the MPC loop, 244 

only the first-time step’s decisions are implemented to the system, as described above. Thus, during a 245 

single time step, , ,

n

s c tu  is limited by one (see Eq. (9)), since only one pumping combination can be 246 

operated in a station at any given time. 247 

The second term of the objective function Eq. (6) aims to minimize the water age deviation, wa  in 248 

the system from the upper bound values 
maxwa , by imposing a penalty parameter M  on the 249 

deviation. This is over the set of all junctions, j  being evaluated ( j J ). Here, wa  is a positive 250 

decision variable which will be zero if the water age at the junction is within the valid range, i.e.: 251 



max

, ,

n n

j t j j twa wa wa           (10) 252 

where ,

n

j twa  is the water age in junction j  at time t  for scenario n  and 
max

jwa  is the upper bound of 253 

the water age at junction j . The formulation of Eq. (6) and Eq. (11) leads to a soft-constraint for the 254 

water age to avoid infeasibility. 255 

As described above in Eq. (3), the water age is a linear function of the observation variables, briefly 256 

expressed as: 257 

 
, , 1

, ( ), ,
j t j t

n n n n

t twa f wa q u v j J n SCN


          (11) 258 

where 
, 1j t

nwa


 is the water age at the junction in the previous time step to describe the water age 259 

dynamics. ( )n

tq u  denotes the flows from pumps corresponding to the pumping combinations selected 260 

by the optimization, and 
n

tv  are the volumes of the water tanks. The mass balance of the tanks is 261 

given in Eq. (12). 262 

, , 1 , , , , ,

, ,

, , , ,
r t r t s c t s c t r t

in r s out r s

n n n n n

s c s c

s S c C s S c C

v v u q t u q t d r R t T n SCN


   

                (12) 263 

where 
,r t

nv  and 
, 1r t

nv


 are the water volumes of tank r  in the demand scenario n  during the current 264 

and previous time steps, respectively. The second and third terms in Eq. (12) are the volumes of water 265 

pumped into and out of the tank, where 
,in r

S  and 
,out r

S  are the set of stations pumping water in and out 266 

of the tank, respectively. The last term in Eq. (12) is the demand associated with the pressure zone of 267 

the tank r . The water volume in the tanks is constrained as follows 268 

,

min max

, , , ,
r t

n

r t r tV v V r R t T n SCN             (13) 269 

,0
,

r

n init

rv V r R n SCN             (14) 270 



, maxmax
, ,

r t

n

r tv V r R n SCN            (15) 271 

where 
min

,r tV  and 
max

,r tV  are the volume upper and lower bound of tank r  in time t , respectively. 272 

Finally, to describe the demand uncertainty, we define several demand scenarios by demand 273 

multipliers. For the first time step ( 0t  ), we assume for all scenarios the same value of the decision 274 

variables, Eq. (16), since this is a viable decision to be implemented for the pump stations. 275 

, ,0 , ,0

1 , ,
s c s c

n

su u s S c C n SCN            (16) 276 

As a result, our scenario-based mixed-integer linear MPC is formulated by Eqs. (6)-(16). The 277 

structure of its realization is shown in Figure 1. The WDS to be controlled consists of pump stations 278 

and a water distribution network (WDS). In our case study, the WDS is simulated by EPANET. In the 279 

MPC, at each time point, the observation variables X  will be measured from the WDS and supplied 280 

to the water age estimator. The estimated water age WA  is then used in the solution of the scenario-281 

based MILP problem. Its result U  will be supplied for the optimal operation of the pump stations. 282 

 283 

Figure 1: Structure of scenario-based MPC 284 

Case study and results 285 

The developed approach is applied on a portion of the real-world based C-Town network (Salomons, 286 

2025), as shown in Figure 2a, (Ostfeld et al., 2012). The network consists of 186 junctions, 210 pipes 287 

(of about 30 Km in length), two tanks (T1 and T5, with volumes of 5000 and 500 cubic meters 288 

respectively), and two pumping stations (S1 and S4 with a maximum capacity of about 685 and 215 289 

3 /m hr , respectively) in which there are five pumps in total. 290 

 291 

Figure 2: C-Town (a) and the test part (b) networks 292 



As a first step, the water age, according to Eqs. (2) and (3), is required to be estimated. As 293 

representative nodes of the network, Tanks T1, T5, and junction J1056 are selected for the water age 294 

estimation. The logic behind this selection is that most of the water flows through the two tanks, and 295 

J1056 is a junction in the middle of the main pressure zone supplied by S1 and T1. An EPANET 296 

simulation with a duration of 1,000 hours is performed for the water age to be stabilized and less 297 

affected by the initial condition of the network. We consider this state as the initial state for testing 298 

our approach. The observation variables ( x X ) used for the estimation of the water age for Tank 1, 299 

Tank 5 and J1056 are given in Table 1, along with the resulted regression coefficients ( b B ), 300 

respectively. 301 

Table 1: Water age model estimation results 302 

 303 

The quality of the estimation of the water age for T1 and T5 is shown in Figure 3. It can be seen that 304 

the water age prediction is quite good with some deviations of 5 to 10 hours. The RMSEs for T1 and 305 

T5 are 4.7 and 3.5 hours, respectively. However, it should be noted that the accuracy of the prediction 306 

is relevant only for the “peaks”, or high values, of the water age as this estimation is used for the 307 

maximum water age constraint. As will be seen in the MPC optimization results, the water prediction 308 

accuracy is well fitted for this purpose. However, applying the procedure for the estimation of the 309 

water age at junction J1056 is not satisfactory, as shown in Figure 4a. It can be seen that the procedure 310 

fails to estimate the high peaks of the water age. As described in the water age estimation section, for 311 

such cases we add a second stage for the estimation algorithm (see Eqs. (4) and (5)). The results of the 312 

second stage are shown in Figure 4b, indicating a significant improvement at the peak points. It is 313 

noteworthy that, although the peaks in the water age values are now estimated accurately, the 314 

accuracy of the low values of the water age is limited. As mentioned above, we are concerned about 315 

the range or the limit of the water age estimation and the error at low levels of water age has no 316 

impact on our closed-loop control. For example, if the water age maximum levels allowed are in the 317 

range of 30 hours, then inaccuracy in estimating low water age levels are not meaningful. 318 



 319 

Figure 3: water age estimation for (a) Tank1, and (b) Tank 5 320 

 321 

Figure 4: Water age estimation for junction J1056, (a) first stage, and (b) second stage 322 

Based on the water age model, the scenario-based linear MPC is now used for real-time optimization. 323 

The flow and specific energy of the combinations of the pump stations, ,S Cq  and ,S Ce  respectively, 324 

are given in Table 2. These input values were derived from the operation history of the pumping 325 

stations. For the energy cost, we assume that the electricity tariff, EC , has a three-tier structure: on-326 

peak, mid-peak, and off-peak with values as 1.0676, 0.6182, and 0.3407 NIS/kWh (NIS – New Israeli 327 

Shekel), respectively. In addition, the duration of the peaks needs to be defined. We assume that 328 

during weekdays, Sunday through Thursday, the mid-peak hours are 6-8, on-peak 14-21, and the rest 329 

is off-peak. On Friday, the mid-peak hours are 16-20, and the rest is off-peak (no on-peak on Friday). 330 

On Saturday, the on-peak hours are 17-19, mid-peak 19-21, and the rest is off-peak, respectively. 331 

Table 2: Flow and specific energy of the combinations of the pump stations 332 

 333 

The base optimization run is performed over one week. That is, the run consists of 168 optimization 334 

steps, each with a prediction horizon 48T h  with a time step 1t h  . The binarization level, 
intT , 335 

is set to five hours. The constraint (upper bound) on the water age is set as 50 hours for the two tanks 336 

(T1 and T5), and 40 hours at junction J1056. It should be noted that, since the estimation of the water 337 

age is not fully accurate, we use a safety level (i.e., a setback) to ensure the real water age stays inside 338 

the specified range. Thus, we define a safety level of at least 10 hours.  339 

The penalty parameter in the objective function (see Eq.(6)) for deviations from the water age 340 

constraints, M , is set to 100 NIS per hour of deviation. The lower bound of the tank volumes is 341 

1,000 and 50 
3m  and their upper bound is 4,700 and 450 

3m for tanks 1 and 5, respectively. To 342 



describe the demand uncertainty, we use two demand scenarios which are set as 5% below and above 343 

the expected demand. It should be noted that future expected demands are not known and need to be 344 

forecasted. However, in this study, we assume that any forecast error will be included in the scenario-345 

based 5% spread.  346 

The initial water age at the tanks and junction J1056 is set to 20 hours which we achieved from 347 

simulation with EPANET. Each run of the optimization provides an optimal operation profile for the 348 

pump stations over the prediction horizon. The decision for the first hour will be realized in the real 349 

WDS. For the case study, the EPANET model is used as the real WDS with the actual demands, to 350 

simulate the state of the system. At the end of the first time step, the values of the state variables will 351 

be used as the initial condition for the next optimization run.  352 

All optimization runs were performed with the Gurobi solver (Gurobi Optimization, 2014) and the 353 

OpenSolver framework (Mason, 2012). The problem is a mixed-integer linear programming (MILP) 354 

and the default solver settings were used, with a stop criteria gap of 0.5%. OpenSolver is an Excel 355 

VBA add-in that extends Excel’s built-in Solver with more powerful free and commercial solvers. 356 

The resulting optimization problem has 1248 decision variables and 874 constraints. The results of the 357 

one-week optimization runs are shown in Figure 5 and Figure 6 (the “base-run”, see the sensitivity 358 

analysis below). Figure 5 shows the resulting water volumes in the two tanks and the water flows at 359 

the pumping stations by realizing the optimized operation profile. It can be seen that, as expected, the 360 

tank volumes are within the lower and upper bounds. Furthermore, from the economic point of view, 361 

they follow a daily pattern which corresponds to the energy tariff change during the day, i.e., the tanks 362 

are filled during the off-peak tariff hours and drained during the mid-peak and on-peak periods. 363 

Similarly, the pump stations pump water into the tanks, Station 1 to Tank 1 and Station 4 to Tank 5, 364 

with higher flows during the off-peak hours and lower flows during the on-peak periods. 365 

 366 

Figure 5: Tank volume and station flow trajectories by the scenario-based MPC 367 



The resulting water age trajectories, as calculated by EPANET, for Tank 1, Tank 5, and junction 368 

J1056 are given in Figure 6a, Figure 6b, and Figure 6c, respectively. As can be seen, the water age is 369 

within the specified range, i.e., there are no violations of the water age upper bound. The total 370 

operating cost for the week, for this base run is 7,027 NIS. It should be noted that the current 371 

operating cost of this system is unavailable. However, in the next section, we compare different 372 

scenarios to the base run, and show the effect of demand variability on the operating costs and the 373 

water age. 374 

 375 

Figure 6: Water age trajectories by the scenario-based MPC (EPANET calculated)  376 

 377 

Figure 7: Run-time cumulative probability 378 

For the real-time operation of a water distribution system, the computation time for solving the 379 

optimization problem is essential since the update of the decision variables should be made available 380 

within the defined sampling time 1t hr  . Therefore, a run-time experiment with multiple 381 

optimization runs is performed by using a personal computer (Lenovo 12th Gen Intel® Core™ i7-382 

1260P 2.1GHz with 32 GB of RAM) and its result is presented in Figure 7. As can be seen, the 383 

maximum run-time of the optimization procedure does not exceed 45 seconds, which is sufficient for 384 

the real-time control, specifically when using a time-step of one hour. 385 

Sensitivity analysis 386 

To investigate the impact of different demand scenarios, a set of sensitivity analysis (SA) runs were 387 

performed, which are summarized in Table 3. First, in SA1, we use the true demands (Ostfeld et al., 388 

2012) instead of the two demand scenarios in the base run (BR). It yields a slightly lower cost of 389 

7,002 NIS, which shows a reduction of 0.4% from the BR. Although the cost reduction is not 390 

significant, a lower cost is expected due to the decreased uncertainty in the demand. 391 

Table 3: Sensitivity analysis results 392 



 393 

In SA2-SA4, we use different degrees of demand scenarios, i.e., 3%, 8%, and 10% below and above 394 

the expected demand (compared to the 5% of the BR). The resulting tank volume and water age 395 

trajectories for Tank 1 are given in Figure 8 and Figure 9, respectively. As expected, it can be seen in 396 

Table 3 that the total cost of operation slightly increases with the increase of the uncertainty level 397 

(with a small exception of the 8% spread). From Figure 8 it can be seen that, as the uncertainty 398 

increases, the use of the water volume increases as well so as to be “prepared” for possible increases 399 

in the demand. Consequently, as the water volume in the tank increases, the water age increases as 400 

well, with small violations of the 50h water age constraint, as shown in Figure 9. 401 

 402 

Figure 8: Water volume trajectories in Tank 1 in different demand scenarios (SA1-SA4) 403 

 404 

 405 

Figure 9: Water age trajectories at Tank 1 in different demand scenarios (SA1-SA4) 406 

Furthermore, the effect of the maximum volume of Tank 1 is examined. Specifically, we define its 407 

maximum volume as 2,000, 2,300, and 2,500 
3m , denoted as SA5-SA7, respectively, compared to the 408 

maximum volume of 4,700 
3m  in the BR. The optimal tank volume and water age trajectories in 409 

Tank 1 are given in Figure 10 and Figure 11, respectively. It can be seen that the effect of a smaller 410 

tank on the total operating cost is significant, i.e. as the water volume decreases, the operating costs 411 

increase, as shown in Table 3. It should be noted that the minimum volume for all the cases remained 412 

at 1,000 
3m . The reduction of the operating costs with the increase of the available storage is 413 

expected as more pumping can be shifted for the on-peak to the off-peak hours and for water to be 414 

stored in the tank for on-peak use. From the water age perspective, the water turnover volume ratio of 415 

the tank increases for the larger volumes (i.e., improving the mixing). For example, in the base run, 416 



the water level reaches 3,000 
3m  and drops to the minimum level of 1,000 

3m , which is a turnover of 417 

about two-thirds of the total volume. Contarary, when the maximum volume is set at 2,000 
3m , the 418 

turnover is only half. Consequently, the water age is lower for the larger volumes, as shown in Figure 419 

11. It should be noted that for SA5 (tank maximum volume as 2,000 
3m ) the water age slightly 420 

exceeds the upper bound. This is because in our problem formulation, a soft-constraint for the water 421 

age is used to avoid the issue of infeasibility. 422 

 423 

Figure 10: Tank 1 water volume trajectories for SA5-SA7 (BR: Base Run) 424 

 425 

Figure 11: Tank 1 water age trajectories for SA5-SA7 426 

In SA8, a case of a smaller tank (the upper bound of Tank 1 as 2,000 
3m ) without the water age 427 

constraints is studied. The results show that the effects are minor in this test case. The total operating 428 

cost is reduced with less than 1% (see Table 3), the water volume is similar (see Figure 12), and 429 

Tank1 water age is slightly higher, as expected, since no constraint is posed on water age, as shown in 430 

Figure 13. 431 

 432 

Figure 12: Tank water volume trajectories for SA8 (WA: Water Age) 433 

 434 

Figure 13: Tank water age trajectories for SA8 (WA: Water Age) 435 

Finally, in SA9, we examine the robustness of the proposed algorithm, with the Tank 1 maximum 436 

volume of 2,000
3m (i.e. a considerably smaller tank) as in SA5, in the case where the actual demand 437 

is increased by 5%. The optimization results show that, as expected, higher demands require 438 

additional pumping, thus the operating costs increased by 8.8% (see Table 3 for SA5 and SA9). 439 



Figure 14 shows the water age at the two tanks. It can be seen that the water age with the higher 440 

demands are slightly lower, this is due to the increased pumping and rapid water change in the tanks.  441 

 442 

 443 

Figure 14: Tank water age trajectories for SA9 (BR: Base Run) 444 

 445 

Conclusions 446 

This study proposed a multivariable linear regression model to predict water age across nodes within a 447 

water distribution network based on measurable variables like tank levels and water flows. We use a 448 

first- and second-stage optimization scheme to refine the estimates, particularly for high water age 449 

peaks. Second, a scenario-based MPC framework was developed to operate WDSs with demand 450 

uncertainty. The formulated MPC solves a mixed-integer programming problem in real time, 451 

minimizing the operating costs according to the electricity tariff and mostly satisfying the specified 452 

water age constraints. The results of a case study demonstrated that the system will indeed maintain 453 

water age within the acceptable limits while minimizing operational costs and meeting various 454 

constraints such as tank volumes. Furthermore, a sensitivity analysis demonstrated the robustness of 455 

the proposed control strategy for the test case under various demand scenarios and tank volume 456 

constraints, indicating only minor deviations from the expected performance even under unsuitable 457 

conditions. Using the proposed approach, the overall operational performance was effectively 458 

managed, and its flexibility in response to different scenarios was confirmed, illustrating its potential 459 

for cost efficiency and system adaptability under demand uncertainties and variable operational 460 

conditions. 461 

Since the test case used in this study was based on a simulated, real-world-inspired water distribution 462 

system, future work should include validating the proposed methodology on actual operational 463 

networks. Testing the approach on a real-world network would provide deeper insights into the 464 

practical applicability of the approach. Another direction would be the extension of the framework to 465 



larger and more complex networks that include multiple critical junctions with water age constraints. 466 

This may require enhancements in both the water age estimation model and the MPC formulation to 467 

ensure scalability and computational efficiency. Developing a systematic methodology for identifying 468 

water-age-critical nodes based on topological, hydraulic, or demand-based criteria would also 469 

strengthen the framework's applicability across diverse networks. In addition, an automated procedure 470 

for selecting an appropriate model complexity of water age (e.g., the number and type of variables in 471 

the regression model) could be explored using machine learning or adaptive modeling techniques. 472 

This would allow the estimation model to balance accuracy and computational load depending on a 473 

given system's specific needs. Lastly, the economic impacts of different tariff structures and the 474 

inclusion of renewable energy sources (e.g., solar-powered pumps) could be evaluated to further 475 

improve cost efficiency and sustainability. 476 
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.



0 20 40 60 80 100 120 140 160

Hour

20

25

30

35

40

45

50

55

W
at

er
 a

ge
 (

hr
)

True 3% 5% 8% 10%



Figure 10.
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Figure 11.
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Figure 12.
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Figure 13.
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Figure 14.
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Observation variable Tank 1 Tank 5 Junction 1056 

S1 flow (LPS) -0.01609 -0.0168 -0.0456 

Tank 1 level (m) 0.34517 0.0703 0.7907 

S4 flow (LPS) 0.04721 -0.0273 0.0762 

Tank 1 previous water age (hr) 0.92365 - - 

DMA 1 demand (LPS) 0.03362 0.0160 0.0380 

Tank 5 previous water age (hr) - 0.9701 - 

Tank 5 level (m) -0.23300 0.4952 - 

DMA 5 demand (LPS) -0.05407 0.0052 - 

Junction 1056 previous water age (hr) - - 0.8936 

 



Pump station Combination 

(#) 

Flow 

( lps ) 

Specific energy 

(
3/kW m ) 

S1 

1 116 0.1 

2 100 0.14 

3 94 0.12 

4 180 0.15 

5 182 0.13 

6 170 0.16 

7 227 0.17 

S4 

1 35 0.32 

2 33 0.3 

3 45 0.4 

 



Run Change from base run Total cost 

(NIS) 

Change from 

BR (%) 

BR None – base run (demand scenarios spread of 

5%) 

7,027 - 

SA1 Using true demands 7,002 -0.36 

SA2 Demand scenarios spread of 3% 6,996 -0.44 

SA3 Demand scenarios spread of 8% 6,986 -0.58 

SA4 Demand scenarios spread of 10% 7,097 0.99 

SA5 Maximum volume for Tank 1 of 2,000
3m  7,402 5.33 

SA6 Maximum volume for Tank 1 of 2,300
3m  7,145 1.67 

SA7 Maximum volume for Tank 1 of 2,500
3m  7,059 0.46 

SA8 Demand scenarios spread of 5%, Tank 1 

maximum volume of 2,000
3m  and no WA 

constraint 

7,387 5.12 

SA9 Demand scenarios spread of 5%, Tank 1 

maximum volume of 2,000
3m  and increase 

“real” demand 5% 

8,056 14.64 
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