
1. Introduction
Water distribution systems (WDS) are critical infrastructure assets as they play a vital role in facilitating various 
human activities. Their purpose is to ensure a continuous and reliable water supply with sufficient quantities, 
pressure, and quality. The operation of WDS consumes significant amounts of energy (Sharif et al., 2019) with 
substantial implications for both the economy and the environment (Dziedzic & Karney,  2015; Salomons & 
Housh, 2020). Consequently, it is essential to develop methodologies to optimize the operation of WDS. Indeed, 
the problem has been researched extensively in the past decades (Lansey, 2007; Mala-Jetmarova et al., 2017). 
While academic literature offers numerous approaches to minimize energy costs in WDS operation, these are 
rarely adopted by water utilities. Rao and Salomons (2007) identified several barriers to the practical integra-
tion of optimization models. Such models are often very complex and require a specialized technical skill set. 
Additionally, networks' complexity can limit the applicability, leading to oversimplified models on the one hand 
or to long run times and local minima on the other hand. Moreover, most techniques aim at solely minimizing 
cost, overlooking other objectives such as network performance and robustness. Robustness is usually associated 
with uncertain factors of the optimization problem and lately is recognized as a key factor in WDS management.
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operation of water distribution systems under uncertainty. Pumping and distributing water consumes a lot of 
energy, therefore water utilities strive to optimize the system's efficiency. This optimization problem involves 
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adjustable robust optimization (ARO) theory. Unlike conventional optimization methods that produce a fixed 
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analysis to quantify the typical uncertainty associated with water demand which supports the formulation of the 
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compared with traditional approaches. Several sensitivity analyses were held to present the ARO advantages 
and compare it with other methods. The results showed that ARO performs competitively with other methods 
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In recent years there has been a growing recognition that certain aspects of WDS management are subject to 
uncertainty, including aspects regarding the operation of WDS (Hutton et al., 2012; Maier et al., 2016). Sources 
of uncertainty in WDS operation have been reviewed by Dandy et al. (2022) and include consumer demands, 
system state (e.g., tank levels, failures), electricity prices, and hydraulic parameters (e.g., roughness coefficients).

A common strategy to address uncertainties involves forecasting uncertain factors and then solving a determinis-
tic problem. However, this approach can result in a sub-optimal or even infeasible operation plan if the realized 
scenario differs from the estimated one. Estimating uncertain parameters can present further difficulties where 
not every uncertainty is predictable and in some cases, there is not available adequate data.

Another approach is to set a steady policy that is independent of the uncertain parameters, thereby guaranteeing 
the feasibility of the solution. In the realm of pump scheduling this can be done by setting tanks' levels as triggers 
for pumps to turn on and off (Housh & Salomons, 2019; Quintiliani & Creaco, 2019). Such an approach ties the 
schedule of each pump to a single tank and misses the system as a whole. Moreover, it struggles to adapt to the 
system's dynamic nature, reflected in the variability across different days, weeks, or months. Thus, frequently 
necessitates adjustments to the operational policy. One of the most prevalent strategies to tackle uncertainty is 
to reduce the uncertain space by delaying future decisions to the time these decisions need to be implemented 
(Castelletti et al., 2023). This framework, which is often referred to as folding horizon or model predictive control 
(MPC), involves repeatedly solving optimization problems with the operational horizon constantly shifting 
forward. After each optimization cycle, decisions for the current time are implemented, the horizon is shifted 
one time step forward, and a new solution is obtained before the next time step begins. The advantage of MPC 
lies in its ability to avoid implementing decisions at the edge of the horizon where forecasts are less reliable. 
Several studies suggested MPC for WDS operation. Fiorelli et  al.  (2013) optimized the operation of a small 
network in Luxembourg by incorporating a dynamic horizon that extends until the end of the current day along 
with a simple demand forecast that is based on a constant demand pattern. Another MPC study conducted by 
Grosso et al. (2017) employed ARIMA time-series analysis for demand forecasting. Acknowledging that fore-
casts themselves can contain errors that might lead to infeasibility, Grosso et  al.  (2017) extended their MPC 
model to incorporate forecast errors by introducing two different stochastic approaches. One approach involves 
chance constraint (CC) relaxation ensuring that the constraints' violation rate stays below a predefined threshold. 
The second approach employs a scenarios tree. Both methods are integrated into the MPC control loop such that 
a new uncertain problem is solved in each time step.

A different approach to tackling optimization problems under uncertainty is robust optimization (RO), intro-
duced by Ben-Tal et al. (2009). RO adopts a worst-case min-max optimization framework such that a feasible 
solution is guaranteed for every scenario within a defined range commonly referred to as an uncertainty set. To 
mitigate the over-conservatism that stems from a worst-case approach, Ben-Tal et al. (2009) proposed using an 
Ellipsoid representation of the uncertainty set, effectively pruning the most extreme scenarios. RO offers several 
key advantages. First, the method does not require complete probabilistic knowledge of the random variables 
(e.g., probabilistic density functions), where uncertainty sets can be constructed based on mean and standard 
deviation (STD) alone. Additionally, RO can provide a global optimum solution within short run times even for 
large-scale problems. Several studies suggested RO to uncertain optimization problems in the water resources 
domain (Housh, 2011, 2017; Pankaj et al., 2022; G. Perelman et al., 2023; L. Perelman et al., 2013; Schwartz 
et al., 2016). However, RO has a static nature, such that all the decisions are made at the beginning of the oper-
ational horizon. As such, RO suffers from several drawbacks. One drawback is that as decisions are made far 
into the future, increasing levels of uncertainty must be considered. Second, the approach fails to incorporate 
newly revealed, relevant information contrasting with the MPC approach which constantly updates based on the 
latest information. To address these drawbacks, adjustable robust optimization (ARO) was introduced by Ben-Tal 
et al. (2004), and offers a dynamic RO approach that incorporates new realized data through the implementation 
of the solution. ARO is gradually being applied to a wide range of problems and demonstrating promising results.

The main feature of ARO is the ability to adjust certain decision variables after the revelation of part of the uncer-
tainty. The method categorizes decision variables into two types: “here and now” and “wait and see.” The latter 
type of variables depends on values of the realized uncertainty, or in other words, these variables are adjusted 
according to the new incoming data. ARO has been applied to various dynamic operation problems such as power 
grid extension (Moreira et al., 2015), renewable energy dispatch (Li et al., 2015), inventory management (See & 
Sim, 2009), hydro-electric reservoir operation (Pan et al., 2015), flood protection (Postek et al., 2019) and also for 
WDS operation (Goryashko & Nemirovski, 2014) and presented high performance in all of them.
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Real-time operation of WDS is studied mainly through MPC frameworks, with and without uncertainty (Castelletti 
et al., 2023). ARO suggests a novel dynamic approach that is based on generating an optimized decision rule that 
can utilize real-time measured data. Moreover, the decision rule is designed to not only optimize operational costs 
but also to guarantee the feasibility of the solution against a range of scenarios. Decision rules can be a powerful 
tool for real-time control of large complex systems, they avoid heavy computations that must be done in short run 
times and are less expected to fail due to missing or faulty data. However, until now the use of decision rules in 
WDS operation is very limited and stayed around simple control schemes such as tank level triggers (Housh & 
Salomons, 2019; Quintiliani & Creaco, 2019). Here a more advanced decision rule is presented with the advan-
tage of optimizing the systems as a whole, considering uncertainty, and without compromising the optimality of 
the solution.

The current study aims to develop an ARO based model for optimizing pump scheduling and minimizing energy 
costs. The proposed method is illustrated through two case studies and is compared with a traditional MPC 
approach to explore the respective advantages and disadvantages of the two methods regarding operation under 
demand uncertainty.

2. Methodology
Optimizing the operation of WDS entails solving a scheduling problem with the objective of minimizing opera-
tional costs (e.g., energy expenses). This is achieved by determining the optimal schedule for the network pumps 
and valves. The schedule must consider not only the immediate moment but also a future operational horizon. 
This is essential for adapting to dynamic conditions such as electricity prices, future water demands, the availa-
bility of water sources and pumps, etc. Typically, the operational horizon is discretized into equal intervals of a 
fixed duration (e.g., 1 hr). Model parameters are explicitly defined for each time step, and decisions can be made 
based on the same division. To account for the lack of complete knowledge regarding some of the parameters, 
random variables denoted 𝜉 are introduced. The random variables can get different values to represent the range
of different possible scenarios. It is noted that although 𝜉 is referred to as a random variable, its probability
density function (PDF) may not necessarily be known. However, PDFs are not required for the proposed method 
as will be explained below. A general statement of an uncertain optimization problem can be described as follows:

Let x be a vector of decision variables, and 𝜉 a vector of uncertain parameters. Let f be the objective function to 
minimize, and g be a set of constraints. A general formulation of an uncertain optimization problem can then be 
represented as:

𝑍𝑍 = min
𝑥𝑥
{𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥) ∶ 𝑔𝑔(𝑥𝑥𝑥 𝑥𝑥) ≤ 0} (1)

As mentioned earlier, RO theory is grounded in considering the worst-case realization of 𝜉 . To account for the
worst-case in both the objective and the constraints, the functions f and g are maximized over the uncertainty 
space 𝜉 . For that purpose, inner optimization problems are formulated, with 𝜉 as the decision variables, where 𝜉  is 
bounded within an uncertainty set U. Maximizing g over 𝜉 ensures that the set of constraints will be satisfied for
any decision x regardless of the actual realization of 𝜉 . Similarly, maximizing f over 𝜉 will yield a worst-case opti-
mal objective that serves as an upper bound of the solution. This worst-case problem (Equation 2) is referred to 
as Robust Counterpart (RC) which is a deterministic optimization problem and thus can be solved with standard 
methods. For a more comprehensive overview of the RO theory, the reader is referred to Ben-Tal et al. (2009). For 
a more detailed description of the RO application for WDS optimization, see (G. Perelman et al., 2023).

𝑍𝑍 = min
𝑥𝑥

{

max
𝜉𝜉∈𝑈𝑈

𝑓𝑓 (𝑥𝑥𝑥 𝜉𝜉) ∶ max
𝜉𝜉∈𝑈𝑈

𝑔𝑔(𝑥𝑥𝑥 𝜉𝜉) ≤ 0

}

 (2)

Problem (Equation 2) is a static RO where all the decision variables are determined at the beginning of the 
operational horizon. To integrate adjustable variables that can adapt to new information, the problem variables 
are replaced with affine functions. The purpose of this replacement is to distinguish between “here and now” 
decisions and “wait and see” decisions where the latter type depends on the observed values from previous 
time steps. ARO theory suggests limiting this dependency to affine functions in order to maintain the problem 
tractability (Yanıkoğlu et al., 2019). Here, linear decision rules (LDR) are used as affine functions to model the 
“wait and see” adjustable variables. Every decision variable from the original set is transformed into an LDR, 
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which depends on the observed values of the uncertain parameter. For example, if x is a vector of decisions that 
need to be made for every period (t) of the problem, it will be reformulated as a series of constants (π) multiplied 
by the uncertainty of previous time steps until t − 1:

𝑥𝑥𝑡𝑡 = 𝜋𝜋0
𝑡𝑡 +

𝑡𝑡−1
∑

𝑟𝑟=1

𝜋𝜋𝑟𝑟
𝑡𝑡 𝜉𝜉𝑟𝑟 (3)

After the above transformation, Equation 3 introduces the LDR coefficient denoted as π as the new decision 
variables of the problem. Consequently, the optimization solution becomes a decision rule rather than a static 
decision, with π as the decision rule weights. The operational policy can be adjusted by the rule according to 
the obtained values of the uncertain parameter. By using a linear rule, the tractability of the original problem is 
preserved. In the case of linear problems, the final RC will be a linear or second order cone problem according to 
the uncertainty set (polyhedral and ellipsoid respectively) (Yanıkoğlu et al., 2019).

2.1. WDS Optimal Operation

The optimal operation of WDS can be formulated as a linear program (LP) based on the above theoretical 
framework. The following formulation is general for any system where examples for illustrative and real-life 
case studies are presented in Figures 3 and 6 respectively. The formulation takes into account both fixed speed 
pumps (FSP) and variable speed pumps (VSP). It is assumed that FSP pumping stations can be operated within 
a finite number of states (pump combinations), thus there exists a finite number of states the system can be 
in Jowitt and Germanopoulos (1992). Accordingly, a continuous decision variable is assigned to every pump 
station (PS) state at every time step, to represent the duration portion this state is operated. Only one state of 
every station can be operated at a given time. In the case of VSP, a continuous decision variable is assigned 
to every time step (t) to represent the flow of the VSP at that time step. Each FSP and VSP variable is asso-
ciated with storage tanks as inflow and outflow according to the network topology. Let 𝐴𝐴 𝐴𝐴FSP

𝑡𝑡𝑡𝑡𝑡
 be the portion of 

time step (t) where state (i) is operated; the flow and power of state (i) are noted as Qi, Pi. Each PS consists 
of a subset of all its FSP states. Let 𝐴𝐴 𝐴𝐴VSP

𝑡𝑡𝑡𝑡𝑡
 be the flow of VSP j at time step (t), the power of VSP pumps is a 

function of the VSP flow: 𝐴𝐴 𝐴𝐴𝑗𝑗

(

𝑥𝑥VSP

𝑡𝑡𝑡𝑗𝑗

)

 . Elect is the electricity tariff at time (t). 𝐴𝐴 𝑑𝑑𝑡𝑡𝑡𝑡𝑡 is the nominal demand at time 
(t) from tank (s), and dt,s is the actual demand such that the random deviation is defined as 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡 =

(

𝑑𝑑𝑡𝑡𝑡𝑡𝑡 − 𝑑𝑑𝑡𝑡𝑡𝑡𝑡

)

 . 
The duration of each time step is noted Δt (1 hr), S is the set of all storage tanks, and T is the number of time 
steps. Pumps that deliver water into tank (s) are noted Inflow as follows: 𝐴𝐴 x𝐹𝐹𝐹𝐹𝐹𝐹

t,i
∈ 𝑠𝑠𝐼𝐼 . Similarly, Outflow pumps 

are noted           𝐴𝐴 𝐴𝐴FSP

𝑡𝑡𝑡𝑡𝑡
∈ 𝑠𝑠𝑂𝑂 .

2.1.1. Objective Function

The objective function of this problem is minimizing the cost of energy. In the below formulation, the objective 
function is transformed into a constraint by introducing a new variable τ. Equation 5 asserts that the total energy 
cost is smaller or equal to τ where according to the objective, τ is minimized. Accordingly, the actual term to 
minimize is the energy cost. The motivation for this transformation is to simplify the subsequent ARO formula-
tion by employing a deterministic objective function that does not explicitly include the decision variables.

2.1.2. Constraints

Equations 6 and 7 describe the mass balance for each tank and each time step, constraining the tank volumes to 
be within the min and max allowable limits. Equation 8 ensures that the final volume in each tank is at least equal 
to the initial volume. Equation 9 restricts the duration of each decision variable to no longer than a single time 
step and stipulates that only one pump's combination can be active at any given moment. Considering the above 
notation, the optimal operation of WDS can be described as follows:

𝑍𝑍 = min
𝑥𝑥𝑥𝑥𝑥∈𝑈𝑈

𝜏𝜏 (4)

Subject to:

𝑇𝑇
∑

𝑡𝑡=1

Elec𝑡𝑡 ⋅ Δ𝑡𝑡

[

∑

𝑖𝑖=1

𝑥𝑥FSP

𝑡𝑡𝑡𝑖𝑖 ⋅ 𝑃𝑃𝑖𝑖 +
∑

𝑗𝑗=1

𝑃𝑃𝑗𝑗

(

𝑥𝑥VSP

𝑡𝑡𝑡𝑗𝑗

)

]

≤ 𝜏𝜏 (5)
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�FSP
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∑

�=1

∑
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�FSP
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�̃
∑

�=1

∑

�∈��

�VSP
�,� −

�̃
∑

�=1

∑

�∈��

�VSP
�,� ≤ �0,� − ��,min

−
�̃

∑

�=1

��,sΔ�∀�̃ = 1. . .� , ∀� ∈ �, ∀�� ∈ �
 (6)

�̃
∑

�=1

∑

�∈��

�FSP
�,� �� −

�̃
∑

�=1

∑

�∈��

�FSP
�,� �� +

�̃
∑

�=1

∑

�∈��

�VSP
�,� −

�̃
∑

�=1

∑

�∈��

�VSP
�,� ≤ ��,max

− �0,� +
�̃

∑

�=1

��,sΔ�∀t̃ = 1. . .� , ∀� ∈ �, ∀�� ∈ �
 (7)

�
∑

�=1

∑

�∈��

�FSP
�,� �� −

�
∑

�=1

∑

�∈��

�FSP
�,� �� +

�
∑

�=1

∑

�∈��

�VSP
�,� −

�
∑

�=1

∑

�∈��

�VSP
�,� ≤ �0,� − �� ,� −

�
∑

�=1

��,sΔ� ∀� ∈ �, ∀�� ∈ � (8)

0 ≤

∑

𝑖𝑖∈PS

𝑥𝑥FSP

𝑡𝑡𝑡𝑖𝑖 ≤ 1 ∀𝑡𝑡 = 1. . .𝑇𝑇 𝑡∀PS (9)

The inclusion of the auxiliary parameter 𝐴𝐴 𝑡𝑡  in some of the constraints allows for the computation of cumulative 
flows and demands, which in turn results in the tank volumes at each time step (t). The purpose of this parameter is 
to sum variables from the optimization start (t = 0) to every time step until the optimization end (t = T). This nota-
tion supports the calculation of accumulated flows and demands that dictate the tanks' volumes at time step (t).

Next, the problem is converted to its adjustable form by replacing the decision variables with LDR. The LDR 
presented in Equation 3 is initially set up to depend on a single uncertain parameter. However, in real problems, 
usually there are multiple uncertain factors such as multiple consumers in WDS where each consumer has different 
uncertainty characteristics. It is desired that the decision variables will adopt information from all the consumers in 
the network, even those that are not topologically linked to a specific decision variable (pump). This is because the 
network is operated as an integrated system where different components are affecting each other. Therefore, a new 
formulation for LDR is required that can accommodate multiple uncertainties. We propose a 'multi-uncertainty 
LDR' that allows decision variables to be functions of all identified points of uncertainty across the network:

𝑥𝑥𝑡𝑡𝑡𝑡𝑡(𝑑𝑑) = 𝜋𝜋0
𝑡𝑡𝑡𝑡𝑡 +

𝑆𝑆
∑

𝑠𝑠=1

𝑡𝑡−1
∑

𝑟𝑟=1

𝜋𝜋𝑟𝑟
𝑡𝑡𝑡𝑡𝑡

(

𝑑𝑑𝑟𝑟𝑡s − 𝑑𝑑𝑟𝑟𝑡s

)

 (10)

𝑑𝑑s ∈ 𝑈𝑈𝑠𝑠, ∀𝑠𝑠 ∈ 𝑆𝑆 (11)

With the improved LDR (Equation 10), the “wait and see” operation decisions for a given pump are adjusted not 
just by information from consumers in the discharge of the pump but according to data arriving from all the parts 
of the network. Thus, maximizing the utility of the revealed data. For ease of notation, and to mark that from now 
on, the decision variables x are dependent on the actual demands d, they will be noted xt,i = xt,i(d) according to the 
LDR presented in Equation 10. To derive the deterministic RC problem, the decision variables from the problem 
in Equations 4–9 are replaced with the adjusted variables.

Z = min
𝑥𝑥𝑥𝑥𝑥∈𝑈𝑈

𝜏𝜏 (12)

Subject to:

max
𝑑𝑑∈𝑈𝑈

[

𝑇𝑇
∑

t=1

Elec𝑡𝑡 ⋅ Δ𝑡𝑡

(

∑

𝑖𝑖=1

𝑥𝑥FSP

𝑡𝑡𝑡𝑖𝑖 (𝑑𝑑) ⋅ 𝑃𝑃𝑖𝑖 +
∑

𝑗𝑗=1

𝑃𝑃𝑗𝑗

(

𝑥𝑥VSP

𝑡𝑡𝑡𝑗𝑗 (𝑑𝑑)
)

)]

≤ 𝜏𝜏 (13)

max
�∈�

[

�̃
∑

�=1

(

−
∑

�∈��

�FSP
�,� (�)�� +

∑

�∈��

�FSP
�,� (�)�� −

∑

�∈��

�VSP
�,� (�) +

∑

�∈��

�VSP
�,� (�) + ��,s∆�

)]

≤ �0,�

− ��,min∀�̃ = 1. . .� ,∀� ∈ �,∀� ∈ �

 (14)

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035508 by T

echnion-Israel Institution O
f T

echnology, W
iley O

nline L
ibrary on [24/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

PERELMAN AND OSTFELD

10.1029/2023WR035508

6 of 16

max
�∈�

[

�̃
∑

�=1

(

∑

�∈��

�FSP
�,� (�)�� −

∑

�∈��

�FSP
�,� (�)�� +

∑

�∈��

�VSP
�,� (�) −

∑

�∈��

�VSP
�,� (�) − ��,s∆�

)]

≤ −�0,�

+ ��,max ∀�̃ = 1. . .� , ∀� ∈ �, ∀� ∈ �

 (15)

max
�∈�

[

�
∑

�=1

(

−
∑

�∈��

�FSP
�,� (�)�� +

∑

�∈��

�FSP
�,� (�)�� −

∑

�∈��

�VSP
�,� (�) +

∑

�∈��

�VSP
�,� (�) + ��,sΔ�

)]

≤ �0,�

+ �� ,� ∀� ∈ �, ∀� ∈ �

 (16)

0 ≤

∑

𝑖𝑖∈PS

𝑥𝑥FSP

𝑡𝑡𝑡𝑖𝑖 (𝑑𝑑) ≤ 1 ∀𝑡𝑡 = 1. . .𝑇𝑇 𝑡∀PS (17)

We note that all the constraints of the above problem (Equations 12–17) have a similar general form as presented 
in Equation  18. With respect to the inner max problems of the constraints, the LDR coefficients, 𝐴𝐴 𝐴𝐴𝑟𝑟

𝑡𝑡𝑡𝑡𝑡
 , are 

constants while the uncertain parameter d is the decision variable. Therefore, the LDR coefficients are noted a 
in Equation 18.

max
𝑑𝑑∈𝑈𝑈

[

𝑎𝑎0 +
∑

𝑡𝑡

𝑎𝑎𝑡𝑡𝑑𝑑𝑡𝑡

]

≤ 0 (18)

The solution to the maximization problem (Equation 18) depends on the uncertainty set U which the uncer-
tain demands (d) are drawn from. In this paper, two types of uncertainty sets were examined. A conservative 
box uncertainty set (Equation 19), and an Ellipsoid uncertainty set (Equation 20) assume that correlations exist 
between the different components of the uncertainty.

max
𝑑𝑑∈𝑈𝑈

[

𝑎𝑎0 +
∑

𝑡𝑡

𝑎𝑎𝑡𝑡𝑑𝑑𝑡𝑡

]

≤ 0, 𝑈𝑈 =

{

𝑑𝑑 ∶ 𝑑𝑑 + 𝛿𝛿𝛿𝛿, ‖𝛿𝛿‖∞ ≤ Ω

}

 (19)

max
𝑑𝑑∈𝑈𝑈

[

𝑎𝑎0 +
∑

𝑡𝑡

𝑎𝑎𝑡𝑡𝑑𝑑𝑡𝑡

]

≤ 0, 𝑈𝑈 =

{

𝑑𝑑 ∶ 𝑑𝑑 + 𝛿𝛿𝛿𝛿, ‖𝛿𝛿‖2 ≤ Ω

}

 (20)

A mathematical description of the uncertainty set is detailed in Equations 19 and 20. Where δ is a mapping 
matrix derived from the covariance matrix of the random demands d. δ symbolizes the level of uncertainty and 
the proportions between different entries in the demands vector. Ω is a parameter of the model that can be tuned 
by the user and stands for robustness, or in other words how extreme the scenarios that the model is required to 
be immunized against. An equivalent way to describe the meaning of δ and Ω is such that δ is the STD and Ω is 
the number of STDs around the mean values included in the uncertainty set. Further explanations on construct-
ing the uncertainty set are below. The solution for problems (Equations 19 and 20) according to (A. Ben-Tal & 
Nemirovski, 1999) presented in Equations 21 and 22 respectively:

𝑎𝑎0 +
∑

𝑡𝑡

𝑎𝑎𝑡𝑡𝑑𝑑𝑡𝑡 + Ω|𝑎𝑎| (21)

𝑎𝑎0 +
∑

𝑡𝑡

𝑎𝑎𝑡𝑡𝑑𝑑𝑡𝑡 + Ω‖𝛿𝛿𝑎𝑎𝑡𝑡‖2 (22)

By replacing all the LDR noted as xt,i(d) in Equations 12–17 with the deterministic LDR in Equations 21 and 22 
the RC form of the problem is obtained. The RC is linear for the box uncertainty set and a second order convex 
problem for the Ellipsoid set. As such, it remains tractable for both uncertainty sets.

The described above formulation is based on earlier work of Goryashko and Nemirovski  (2014), however, it 
incorporates several significant enhancements. First, the proposed formulation better represents the nonlinear 
hydraulics relationships between pumps' flow, head, and efficiency. An Ellipsoid uncertainty set is used for most 
experiments, which is less conservative than box uncertainty sets and describes better the uncertainty related to 
water consumption (see below). Moreover, the method includes multi-uncertain LDR allowing the “wait and see” 
adjustable variables to utilize network-wide information and improve the adjustability of the decision variables.
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2.2. Uncertainty Quantification

Uncertainty surrounding consumer demands is probably the most common type of uncertainty in WDS manage-
ment. To address this issue in the optimization problem, it is necessary to first quantify and characterize it. Previ-
ous work by Housh et al. (2011) already proved mathematically why Ellipsoid uncertainty sets are equivalent 
to multivariate normal distribution and provided justification for the use of Ellipsoid in RO problems. Here the 
same claim is justified in another way by analyzing a real data set of observed demands over 1 year. To quantify 
the uncertainty, the analysis examined not the demand values themselves but the deviations from known nominal 
values. These deviations define the range of plausible scenarios, where the probability for each scenario can be 
estimated based on the density of the deviations. The analyzed data set has a periodic daily pattern as shown in 
Figure 1. Accordingly, the nominal values are chosen to be the mean values across the same hour of different 
days.

To investigate the nature of uncertainty, which in this case reflects in the deviations from nominal values, the 
differences between the observed and the hourly means were calculated for each hour of the day. This resulted 
in 24 series of values, with each series representing the deviation of a specific hour of the day over 365 days. 
Due to the large dimensions of the uncertain parameter (24 × 1, or 24 × n in the case of n consumers), visu-
alizing the full uncertainty space becomes impractical. Therefore, the uncertainty space was decomposed and 
analyzed in pairs, with each hour examined individually against all other hours of the day. To estimate the 
correlation between a pair of 2 hr, confidence intervals were calculated using a 2D normal distribution of the 
two series. If the observed data fell within the confidence intervals, it indicated that the uncertainty follows a 
normal distribution. A normal distribution implies that the probability of getting an extreme value is decreas-
ing exponentially  toward the edges of the distribution. In a multivariate normal distribution, the joint proba-
bility of extreme value in multiple coordinates is extremely low. In terms of water consumption, this suggests 
that extreme values are obtained through all hours of the day, which is a very rare event. Figure 2 shows the 
relationships between pairs of different hours of the day. The diagonal subplots display the histograms of the 
deviations in the ith hour, while all other subplots show the deviation in the ith hour plotted against the devi-
ations in the jth hour. It can be seen that the values are falling within ellipses where each ellipse represents 
one STD of the 2D normal distribution. Most values lie within the two first STDs. Additionally, there is a 
notable linear correlation between consecutive hours (as seen in the subplots to the right of the histograms). 
The correlation weakens as the time difference between hours increases, which is expected. However, even 
for later hours, the relationship still follows an elliptical shape. The complete information about the described 
correlation is captured in the mapping matrix introduced in Equation 20. The mapping matrix controls how the 

Figure 1. Daily demand pattern, each line represents the hourly values of a different day.
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uncertainty is distributed across the random vector to obtain the worst-case scenario. Solving the optimization 
problem subject to the worst case is what guarantees the feasibility of the solution for any scenario within the 
uncertainty set.

3. Application Examples
The proposed methodology is implemented in two case studies. The first case study is a small illustrative network 
to demonstrate the methodology in detail, then a real-life network is used to demonstrate the applicability in large 

networks and for sensitivity analysis. The method was coded in Python using 
RSOME (Robust Stochastic Optimization Made Easy), a Python package for 
RO (Chen et al., 2020). The optimization problems were solved with Gurobi 
10.0.1 solver (Gurobi Optimization, 2023).

3.1. Case Study 1—Illustrative Network

An illustrative network is presented in Figure 1. The network consists of a 
single aggregative consumer supplied by two sources, a PS with two pumps 
and a well. The water sources and demand are regulated by a single tank 

Figure 2. Visualization of deviation from nominal demand values.

Figure 3. Illustrative network layout.
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with a volume of 3,000 m 3. The min and max allowed volumes are 500 and 
2,800 m 3 respectively, and the initial volume is 1,500 m 3.

The network is optimized for 24 hr period to find the minimum operational 
energy costs. Electricity tariffs contain two rates: on-peak and off-peak with 
respective costs of 1.25 and 1 € per kWatt-hr occur during working hours 
(08:00–17:00) and the rest of the day (18:00–08:00) respectively. Operational 
points for the PS and well are detailed in Tables 1 and 2.

The uncertainty set is built based on different levels of uncertainty to analyze 
the tradeoff between robustness and cost which is referred to as the “price 

of robustness.” The level of uncertainty is noted by θ, and it represents the possible deviation from the nominal 
values. In this study, different levels of uncertainty were examined between 0% and 25% with 5% steps. For a 
given uncertainty level θ, the covariance matrix is structured as follows:

𝜎𝜎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜃𝜃 0 . . . 0

0 𝜃𝜃 0

⋮ ⋱ ⋮

0 . . . . . . 𝜃𝜃

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

 (23)

𝜌𝜌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 𝑟𝑟1,2 . . . 𝑟𝑟1,𝑇𝑇

𝑟𝑟2,1 1

⋮ ⋱ ⋮

𝑟𝑟𝑇𝑇 ,1 . . . . . . 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

 (24)

Σ = 𝜎𝜎𝜎𝜎𝜎𝜎𝑇𝑇 (25)

Σ = 𝛿𝛿𝛿𝛿𝑇𝑇 (26)

where ri,j are correlation coefficients between different consumers and different time steps. ρ is a correlation 
matrix, Σ is the covariance matrix and δ is the mapping matrix used to define the uncertainty set, see Equation 20. 
For more detailed information on how the uncertainty set is constructed the reader is referred to (G. Perelman 
et al., 2023).

The network was analyzed by first solving a deterministic problem such that the uncertainty level equals 0. Next, 
increasing levels of uncertainty were examined with several uncertainty sets. These included a box uncertainty set 
and two Ellipsoid sets with robustness values of Ω = 1 and Ω = 2. Two problems were solved for each uncertainty 
configuration. A static RO problem that yields the worst-case optimal policy and an ARO where the objective 
value is dependent on the observed demands. For the ARO problems, the nominal objective value was calculated 
based on the nominal demands where the nominal solution is equivalent to the expected value of the solution. The 
results for all the experiments are presented in Table 3, the values inside the parentheses mark the deviation from 
the deterministic problem. It is evident that the adjusted solution is clearly superior to the static one. The static 
worst-case solution deviates from the deterministic in the range of 2%–13.6% compared to less than 2.8% in all 
the nominal adjusted solutions. Moreover, the proportion between uncertainty level to increase in cost is more 
moderate in the adjusted solution than in the worst-case solutions. The most conservative uncertainty set (box 

with an uncertainty level of 25%) results in an objective value that is only 
2.8% larger than the deterministic solution. Furthermore, a static RO policy 
is infeasible for box uncertainty sets with most uncertainty levels and for 
some of the ellipsoid uncertainty sets, while ARO was able to find a feasible 
optimal policy for all uncertainty configurations.

In ARO solutions, at every hour new operational decisions can be made 
where the decisions depend on data realized in previous time steps. As such' 

Flow 
(m 3/hr)

Mean power 
(kWatt)

STD power 
(kWatt)

S. Energy 
(kWatt-hr/m 3) Unit 1

Unit 
2

250 100 10 0.4 1 0

250 95 10 0.38 0 1

400 172 10 0.43 1 1

Table 1 
Pump Station Hydraulic Operational States

Flow (m 3/
hr)

Mean power 
(kWatt)

STD power 
(kWatt)

S. Energy 
(kWatt-hr/m 3) Well

300 126 5 0.42 1

Table 2 
Well Hydraulic Operational States
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the obtained solutions are not decision variables values but the coefficients of LDR. For example, the optimal 
solution for the first 12 hr of the well operation (𝐴𝐴 𝐴𝐴FSP

𝑡𝑡𝑡well
 ) is presented in Equation 27, where the full 24 hr solution 

is attached as Supporting Information S1. The solution is structured such that each decision is dependent only on 
previous periods, hence the upper triangular of the matrix contains only zeros. For example, operating the well at 
time t = 2 will be according to the demand value observed in time t = 1: 𝐴𝐴 𝐴𝐴FSP

𝑡𝑡=2,well
= 0.11 + 10

−3
⋅ 8 ⋅ 𝜉𝜉1 . Moreover, 

it can be seen that the weights of the latest data are larger than the weights of former time steps. Meaning that 
more importance is given to the latest observations. At times t = 8–12 the well is not operated at all which makes 
sense since the high-peak tariff starts at 08:00, and therefore all the coefficients equal 0.

𝑥𝑥FSP

𝑡𝑡𝑡well
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.53

0.11

0.13

0.15

0.19

0.25

0.36

0.52

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ 10
−3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

11 10 0 0 0 0 0 0 0 0 0 0

15 13 15 0 0 0 0 0 0 0 0 0

19 17 20 26 0 0 0 0 0 0 0 0

22 20 24 32 50 0 0 0 0 0 0 0

16 16 20 28 43 80 0 0 0 0 0 0

9 9 12 16 25 40 109 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉𝜉1

𝜉𝜉2

𝜉𝜉3

𝜉𝜉4

𝜉𝜉5

𝜉𝜉6

𝜉𝜉7

𝜉𝜉8

𝜉𝜉9

𝜉𝜉10

𝜉𝜉11

𝜉𝜉12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

 (27)

Next, the ARO method was compared with other dynamic approaches based on a folding horizon strategy (MPC). 
As explained in the introduction section, MPC models solve optimization problems repeatedly while updating 
the input parameters with the latest observed data. In this study, two MPC models were examined: a determinis-
tic model, and an uncertain model. The deterministic model is based on the standard LP formulation, while the 
uncertain model was formulated with a static RO. Both models are based on the formulation in Equations 4–9. In 
the deterministic model, demands are assumed to be certain whereas in the RO model demands are maximized 
to be at the worst-case scenario. In every time step, the demands for the next horizon were predicted using a 
simplistic method of assigning the nominal (mean) value for each hour. To evaluate the performance of each 
method, Monte Carlo simulations were conducted with 1,000 random samples drawn from multivariate normal 
distribution with the same characteristics of the uncertainty set used in the RO and ARO methods. The results of 
the MPC and the ARO methods are presented in Figure 4.

The results depicted in Figure 4 demonstrate that the ARO method performs competitively when compared to 
traditional folding horizon (MPC) methods. Although the robust MPC yields the lowest mean value, surpassing 

Uncertainty 
(%)

Worst-case: RO Nominal: ARO

Box Ellipsoid Ω = 1 Ellipsoid Ω = 2 Box Ellipsoid Ω = 1 Ellipsoid Ω = 2

0 1905.8 (0%) 1905.8 (0%) 1905.8 (0%) 1905.8 (0%) 1905.8 (0%) 1905.8 (0%)

5 2103.5 (10.4%) 1944.3 (2.0%) 1985.5 (4.2%) 1909.4 (0.2%) 1908.6 (0.1%) 1911.3 (0.3%)

10 Inf 1985.5 (4.2%) 2075.3 (8.9%) 1918.1 (0.6%) 1911.3 (0.3%) 1919.3 (0.7%)

15 Inf 2030.4 (6.5%) 2165.2 (13.6%) 1930.5 (1.3%) 1914.7 (0.5%) 1928.6 (1.2%)

20 Inf 2075.3 (8.9%) Inf 1944.8 (2.0%) 1919.3 (0.7%) 1938.0 (1.7%)

25 Inf 2120.2 (11.2%) Inf 1959.2 (2.8%) 1924.0 (1.0%) 1949.7 (2.3%)

Table 3 
Experimental Results for the Illustrative Network
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even a deterministic (perfect knowledge) solution, the difference between the three approaches is 0.2% which 
is negligible from a practical perspective. Nevertheless, ARO outperforms MPC in terms of STD. While MPC 
solutions range from 1,750 to 2,070, the range of the ARO solutions is narrower, spanning from 1,880 to 1,940. 
Consequently, ARO suggests a more robust approach that is less susceptible to the realization of uncertain param-
eters. Another advantage of ARO is that it provides an offline solution as a decision rule prior to any decision 
implementation. This implies that ARO offers an operation policy that can be employed in advance to examine 
extreme scenarios, plan maintenance works, and other network management activities without compromising on 
performance that is typically achieved only by real-time methods.

An important feature of the proposed ARO approach is its dependency on real-time observed data. Therefore, 
any delays in data receiving might affect the optimality of the solution. Such delays can result from sensors' time 
sampling, synchronization frequency, data verifications, and other data management procedures. To investigate 
the importance of the data availability a sensitivity analysis was held where the LDR coefficients of the recent 
k periods were assigned with a value of 0. For that, Equation 10 is changed such that the inner summation runs 
from the optimization first step until the previous k+1 step. The coefficients that are multiplied by the demands 
of the latest k steps are zeros such that these demand values cannot affect the solution.

𝑥𝑥𝑡𝑡𝑡𝑡𝑡(𝑑𝑑) = 𝜋𝜋0
𝑡𝑡𝑡𝑡𝑡 +

𝑆𝑆
∑

𝑠𝑠=1

𝑡𝑡−(1+𝑘𝑘)
∑

𝑟𝑟=1

𝜋𝜋𝑟𝑟
𝑡𝑡𝑡𝑡𝑡

(

𝑑𝑑𝑟𝑟𝑡s − 𝑑𝑑𝑟𝑟𝑡s

)

 (28)

The analysis was held with an ellipsoid uncertainty set, the same levels of uncertainty used in the standard solu-
tion, and data latency of 0–22 hr (k = 0,1…,22). A latency of 0 hr is equivalent to the ARO solutions in Table 3 
where it is assumed that all the information from previous steps is available. A latency of 23 hr means reducing 
the ARO to its worst-case version which is equivalent to RO. It is expected that the performance of the method 
will deteriorate with the decrease in available data. Figure 5 shows that the results match the intuitive expecta-
tions where an increase in the information gap results in higher energy costs. It is noted that any additional hour 
of latency in the range of 6 hr before the current time step has a significant impact on the solution. Where in the 
range of above 6 hr, the marginal latency has a smaller effect. This conclusion is consistent with the LDR coeffi-
cients presented in Equation 27 and Supporting Information S1 where the latest coefficients get the larger weights 
and have the greatest importance for the solution.

3.2. Case Study 2—Sopron Network

A second case study is a real-life network of the city of Sopron, Hungary (Selek et al., 2012). The water sources 
of the network are five wells equipped with VSP. The network consists of eight pressure zones (tanks), and eight 
pump stations with parallel FSP. In five out of the eight pressure zones there is demand while the other three 
pressure zones are used to regulate flow from the wells before pumped into the network. Each of the FSP pump 
stations gets power from a different power station such that the available power is constrained. Moreover, the 
problem includes additional constraints that were not part of the illustrative example. Each of the wells has a min 
and max required volume to pump within 24 hr of operation. The changes in VSP flows are limited such that 

Figure 4. Comparison of adjustable robust optimization method with conventional model predictive control for the 
illustrative example.
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flows are constant within the electricity tariff periods. To address the additional constraints the mathematical 
formulation (Equations 12–17) was extended as follows:

𝑥𝑥VSP

𝑡𝑡𝑡𝑡𝑡 (𝑑𝑑) = 𝑥𝑥VSP

𝑡𝑡+1𝑡𝑡𝑡
(𝑑𝑑)𝑡 ∀𝑡𝑡 ∈ TP𝑡 ∀𝑡𝑡 ∈ VSP (29)

𝑉𝑉𝑗𝑗𝑗min =

𝑇𝑇
∑

𝑡𝑡=1

𝑥𝑥VSP

𝑡𝑡𝑗𝑗𝑗 (𝑑𝑑) ⋅ Δ𝑡𝑡 ≤ 𝑉𝑉𝑗𝑗𝑗max𝑗∀𝑗𝑗 ∈ VSP (30)

∑

𝑖𝑖∈ps

𝑥𝑥FSP

𝑡𝑡𝑡𝑖𝑖 (𝑑𝑑) ⋅ 𝑃𝑃𝑖𝑖 ≤ PS𝑡𝑡𝑡max𝑡 ∀𝑡𝑡 = 1. . .𝑇𝑇 𝑡 ∀ps ∈ PS (31)

Where TP is tariff periods, meaning time steps where the tariff is not changed. Within these periods, the flow of 
VSPs is constant. Vj,min and Vj,max are the total daily required volume of wells to meet hydrological limitations. ps 
is a single power station and PS is the set of all power stations. The total power consumed from a power station 
at time (t) must be lower than the power station capacity at time (t). The full description of the second case study 
and all its detailed data can be found in Selek et al. (2012). The network topology is presented in Figure 6.

The uncertainty sets for Sopron network constructed with the demands detailed in Selek et al. (2012) as the nomi-
nal values and different levels of uncertainty similar to the illustrative example. The results for Sopron network 
are presented in Table 4.

The nature of the results is very similar to the illustrative network. The proportion between the level of uncer-
tainty to the increase in energy expenses is consistent with the range obtained in the illustrative network. The 
worst-case policy yields solutions with a 2%–9.2% increase compared to the deterministic solution. In the adjust-
able approach, the impact of uncertainty on the operational costs ranges from 0.2% to 4.3% increase. Compared 
to the illustrative network, here, the uncertainty consequence is more dramatic where the increase in energy cost 
is almost double than in the illustrative network. ARO shows its great advantage compared to the static RO. 
While the static robust policy reaches 9.2% more than the deterministic, and while no robust policy was found for 
uncertainty levels larger than 20% (10%) for Ellipsoid with Ω = 1 (Ω = 2), the ARO method exceeds only 4.3% 
from the deterministic in the most extreme ellipsoid uncertainty set and was able to find an optimal policy for all 
Ellipsoid uncertainty sets.

Similar to the illustrative network, the method performance for Sopron network was compared with the 
MPC approach, the results are presented in Figure 7. Here the advantages of ARO are more prominent as it 

Figure 5. Data latency analysis for the illustrative example.
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outperforms the traditional folding horizon in both expected costs and STD. The improvement in expected 
value is not dramatic, 1.3% compared to the deterministic MPC and only 0.3% compared to the uncertain 
MPC. However, ARO solutions are much more stable as the STD of the results is only 15 which is 0.2% of 
the expected value. The low STD value indicates the robustness of the method. Despite the size of the system 
and the large number of control elements, the method achieves stable results that are not too sensitive to the 
scenarios' realizations.

Figure 6. Sopron network layout.

Uncertainty (%)

Worst-case: RO Nominal: ARO

Box Ellipsoid Ω = 1 Ellipsoid Ω = 2 Box Ellipsoid Ω = 1 Ellipsoid Ω = 2

0 6685.5 (0%) 6685.5 (0%) 6685.5 (0%) 6685.5 (0%) 6685.5 (0%) 6685.5 (0%)

5 Inf 6827.6 (2.1%) 6980.2 (4.4%) 6741.9 (0.8%) 6699.5 (0.2%) 6718.6 (0.5%)

10 Inf 6980.2 (4.4%) 7303.9 (9.2%) 6832.7 (2.2%) 6718.6 (0.5%) 6768.9 (1.2%)

15 Inf 7140.9 (6.8%) Inf Inf 6742.5 (0.9%) 6825.9 (2.1%)

20 Inf 7303.9 (9.2%) Inf Inf 6768.7 (1.2%) 6893.5 (3.1%)

25 Inf Inf Inf Inf 6796.5 (1.7%) 6976.3 (4.3%)

Table 4 
Experimental Results for the Sopron Network
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4. Discussion
Demand uncertainty can be found in all WDS optimization problems, specifically in pump scheduling. In light 
of this uncertainty, robustness is another crucial objective in addition to minimizing operational costs. In this 
study, robustness is defined as the probability that all the problem constraints are satisfied. The use of RO based 
methods guarantees the feasibility of the operational policy against any scenario within a predefined range, 
determined by the desired probability level of constraint satisfaction. By conducting an analysis similar to the 
one that is presented in Figures 1 and 2, water utilities can design Ellipsoid uncertainty sets that guarantee oper-
ational robustness within a specific confidence interval. For example, an uncertainty set encompassing 95% of 
the scenarios (95% of the dots in Figure 2) will result in a policy that will be feasible for at least 95% of the days. 
The results of our study indicate that achieving such robustness incurs a relatively small increase in operational 
costs, approximately 2%–4%. Furthermore, the operational costs remain stable and close to expected values, even 
in extreme scenarios. Additionally, as mentioned above the proposed method offers another indirect robustness 
of the system management by the fact that the solution is obtained offline even though it carries real-time models' 
advantages. By optimizing the decision rule offline the optimal policy is obtained in advance before any infor-
mation is discovered. This can improve the robustness of the system as it allows a more in-depth analysis of the 
results and planning toward special events and activities in the network.

Previous studies reported did not suggest a real-time solution which also considers uncertainty. Moreover, studies 
that addressed uncertainties suffer from inapplicability for different reasons. For example, chance constrained 
(CC) methods are highly complex to solve and in doubt if can be applied to real networks. Sampling methods and 
evolutionary algorithms require long run times and global optimum is not necessarily obtained. From a practical 
perspective, ARO suggests a solution that answers these difficulties without compromising optimality.

5. Conclusions
In this study, an ARO is proposed for optimizing the operation of WDS under demand uncertainties. Also, a 
typical demand data set is analyzed to characterize and quantify this kind of uncertainty and support the construc-
tion of uncertainty sets on which ARO is based. An important conclusion from this analysis is that consumer 
demands are temporally correlated which justifies the use of ellipsoid uncertainty sets in RO and ARO models. 
The proposed method is a dynamic RO where its main advantage lies in its ability to be adjusted in real-time 
according to observed data. The solution provided by the method is not a static operational plan but a decision rule 
that allows adjustments during its implementation as a response to the uncertainty realization. The method was 
compared with static RO and also with traditional dynamic approaches of MPC and exhibited superior perfor-
mance. In terms of expected energy costs, ARO presented comparable performance to the MPC approaches. 
In terms of stability, ARO performance was less fluctuated with smaller deviations from its nominal expected 
value. Another advantage of the proposed method is the form of the solution as a decision rule rather than a fixed 
operation schedule. The rule allows operators to analyze the response to various future events and plan ahead. 
Since the method depends on real-time data, a sensitivity analysis was conducted to examine the impact of data 
latency. The results of this sensitivity analysis represent the price of the gap in knowledge. Thus, it is a useful 

Figure 7. Comparison of adjustable robust optimization method with conventional model predictive control for the Sopron 
network.
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tool for stakeholders to evaluate the worth of investments in improving the data availability. To conclude, ARO 
suggests a practical method to optimize the operation of WDS while considering uncertainty. By utilizing real-
time observed data, the method achieves optimal solutions that can compete with deterministic methods and yet 
still hold the advantage of robustness against a range of uncertain scenarios.

Data Availability Statement
The data and code used in this research are available on GitHub (https://github.com/GalPerelman/wds-aro) (G. 
Perelman, 2023). The optimization models were formulated with RSOME (Robust Stochastic Optimization Made 
Easy), a Python package for RO (Chen et al., 2020).
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