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Abstract: Water distribution network design is a complex multi-objective optimization problem and
multi-objective evolutionary algorithms (MOEAs) such as NSGA II have been widely used to solve
this optimization problem. However, as networks get larger, NSGA II struggles to find the diverse
and uniform solutions that are critical in multi-objective optimization. This research proposes an
improved version of NSGA II that uses three new-generation methods to target different regions of
the Pareto front and thus increase the number of solutions in critical regions. These methods include
saving an archive, local search around extreme and uncrowded Pareto front, and local search around
the knee area of the Pareto front. The improved NSGA II is tested on benchmark networks of different
sizes and compared to the best-known Pareto front of the networks determined by MOEAs. The
results show that the proposed algorithm outperforms the original NSGA II in terms of broadening
the Pareto front solution range, increasing solution density, and discovering more non-dominated
solutions. The improved NSGA II can find solutions that cover all parts of the Pareto front using a
single algorithm without increasing computational effort.

Keywords: water distribution network; multi objective optimization; MOEAs; NSGA II; improved
NSGA II

1. Introduction

Water supply systems are an essential part of a vast urban infrastructure system
that underpins most economic activity and is used by urban populations to perform
basic domestic activities [1]. A water distribution network is a hydraulic infrastructure
that is usually the most costly component of urban infrastructure that delivers water to
nodes while maintaining predetermined pressure requirements [2,3]. Designing such
networks involves choosing optimal combinations of values for decision variables such as
pipe sizes, tank shapes and sizes, pump types, and valve locations, while also satisfying
several constraints [4]. Optimal design problems for Water Distribution Systems (WDSs)
typically involve selecting the best pipe size, which is challenging due to the problems’
high dimensionality, discreteness, and non-linearity [5]. To solve these problems, advanced
optimization techniques are required due to the complexity of WDSs and their components’
arrangement [6].

WDS optimization aims to maximize system performance and profitability while
minimizing resource consumption and cost, all of which are typically limited [7]. As
constructing these systems is costly, the optimization objective is to find the least expensive
network [8]. The design of water systems is a multi-objective optimization problem (MOPs)
that needs to simultaneously optimize a number of objectives in addition to cost such
as operational, life cycle, and maintenance costs, system reliability, and water quality [9].
Optimizing for one objective may result in suboptimal performance for others [8]. To
address this complex problem, engineers have used single-objective optimization models
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in the past, but multi-objective optimization approaches have become increasingly popular
in recent years, providing a way to investigate trade-offs between objectives and make
informed decisions.

Optimizing water distribution networks (WDNs) is crucial for their performance and
reliability. Network resilience, which refers to the network’s ability to recover from internal
or external disturbances, is an important aspect of this optimization [10]. Incorporating
network resilience in the objective function can lead to better results in terms of surplus
power and redundancy [10]. Mechanical or hydraulic failure in WDNs can cause increased
head losses and network failure, which is why it is essential to have excess power available
for internal dissipation. Simply optimizing for cost can leave the network vulnerable
to hydraulic and mechanical failures [11]. Including reliability in optimization can be
computationally intensive, so approximate methods like the resilience index [12] can be
used. The inclusion of network resilience in WDN optimization is critical for maintaining
the network’s performance and reliability in both normal and failure conditions [13].

Various optimization methods are available for water distribution systems and can
be categorized into deterministic and stochastic techniques. Deterministic techniques in-
volve linear programming, non-linear programming, and dynamic programming, while
stochastic techniques include population-based algorithms and single point-based meth-
ods. Metaheuristics, a type of stochastic technique, provides a near-optimal solution in a
single run by using principles from nature and involving random components. Genetic
algorithms, inspired by mechanisms of biological evolution, have been widely applied in
water resources planning and management [14,15]. These algorithms are capable of solving
nonlinear, nonconvex, multimodal, and discrete problems, expanding their capabilities in
handling complex environmental and water resource applications [15].

Classical search and optimization methods may not be effective in dealing with MOPs
due to their inability to find multiple solutions in a single run and the challenges in
handling problems with discrete variables and multiple optimal solutions [9]. Evolutionary
algorithms (EAs), particularly MOEAs, are effective for MOPs as they use a population of
solutions to find multiple Pareto-optimal solutions in a single run [16]. Diversity preserving
mechanisms can be incorporated into MOEAs to find widely different Pareto-optimal
solutions [9]. EAs are less affected by the shape or continuity of the Pareto front, unlike
classical methods [17]. In water distribution system design, Pareto archived evolutionary
strategy (PAES), Strength Pareto evolutionary algorithm (SPEA-2), and non-dominated
sorting genetic algorithm II (NSGA-II) [18] are the most widely used MOEAs that effectively
handle multiple objectives and find a set of solutions that are not dominated by others.
The use of these MOEAs has greatly improved the efficiency and effectiveness of the water
distribution system design process.

The Non-Dominated Sorting Genetic Algorithm (NSGA-II) is a widely used algorithm
for solving MOPs with both continuous and discrete variables [19]. It is considered one
of the most representative algorithms in multi-objective optimization [20] and had been
recognized as the EA state-of-the-art in solving WDS-related optimization problems [21].
NSGA-II is an improved version of the Non-Dominated Sorting Genetic Algorithm (NSGA)
that overcomes some of its limitations, such as the absence of elitism and the need to define
sharing parameters for diversity preservation [22]. The design of NSGA-II incorporates
an elitist strategy to expand the sample space and improve optimization accuracy, and the
crowding distance operator to preserve diversity. NSGA-II is computationally efficient, with
an overall complexity of at most O(MN2), where M is the number of objective functions
and N is the population size. The fast non-dominated sorting method used in NSGA-
II reduces computational complexity, making it efficient and powerful in exploring the
decision space of MOPs. NSGA-II has been widely implemented and applied to various
MOPs, demonstrating its effectiveness and reliability.

NSGA-II has been combined with other methods and tools to enhance its effectiveness
in solving optimization problems in WDS. The Robust NSGA-II (RNSGA-II) [23] algo-
rithm was developed based on NSGA II to ensure that the solutions are robust enough
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and able to sustain longer over multiple generations in the optimization process. The
Epsilon-dominance Non-dominated Sorting Genetic Algorithm II (e-NSGA-II) is another
optimization algorithm that is based on the original NSGA II that utilizes the e-dominance
concept, adaptive population sizing, and self-terminating algorithm to achieve well-spread
and well-converged Pareto-optimal solutions. Non-dominated Sorting Genetic Algorithm
III (NSGA-III) [24] is an improved version of NSGA-II using a reference-point-based non-
dominated sorting approach. However, NSGA-II is still the most preferred algorithm
compared to NSGA-III, and variations of NSGA-II, such as RNSGA-II, e-NSGA-II, and a
combination of NSGA-II with other methods, have shown that NSGA-II is still relevant
and capable of handling the task [25].

Wang et al. [26] applied five state-of-the-art MOEAs to twelve design problems col-
lected from the literature, with minimum time invested in parameterization by using the
recommended settings. The study found that the MOEAs were complementary to each
other, and that NSGA-II remained a good choice for two-objective optimization of water
distribution systems (WDSs) and generally outperformed the other MOEAs in terms of
the number of solutions contributed to the best-known Pareto front of each problem. The
spread (both extent and uniformity) of its contribution was also comparable, if not better,
than other MOEAs. Overall, the paper contributes to the best-known approximations to
the true Pareto fronts of a wide range of benchmark problems, and the results are going
to be used in this research for comparison of some of the benchmark networks. However,
NSGA-II and other MOEAs had limitations with intermediate and large-sized problems,
resulting in a limited range of solutions with low diversity. In order to overcome these
limitations and achieve better results for multi-objective optimization problems, this study
proposes an improved version of NSGA-II. In their work, Cunha et al. [27] introduced
MOSA-GR, a novel multi-objective simulated annealing algorithm equipped with innova-
tive searching mechanisms. MOSA-GR demonstrated superior performance by generating
Pareto fronts that surpassed those produced by MOEAs, even when merging their results.
In this study, the new searching mechanisms from MOSA-GR will be applied to NSGA-II to
develop an improved algorithm for better results and contribute to the advancement of the
existing literature on multi-objective optimization algorithms, enabling effective handling
of complex real-world problems with enhanced diversity and density of solutions.

2. Materials and Methods
2.1. Problem Definition of the Multi-Objective Problems

The optimization problems in Water Distribution Systems (WDSs) design usually
involve two objective functions: minimizing the cost and maximizing the network reliability
or robustness. In this context to solve the multi-objective optimization, the objectives
defined in model formulation are minimizing the cost while maximizing resilience. The
decision variables are diameter, which can be adjusted to obtain an optimal solution that
satisfies both objectives. The cost objective function considers the expenditure of pipe
components as the total cost of a design solution. The unit cost of a specific pipe diameter
for each problem is derived from the paper by [26] (Equation (1) below).

Resilience in the context of WDS design refers to the ability of the system to continue
functioning in the presence of failures or disturbances. The specific definition of resilience
may vary depending on the WDS design optimization problem. In this study, the resilience
index proposed by [10] (Equation (2) below) is used as a measure to optimize the reliability
of the network. It is recognized that some authors have proposed updates to Todini’s index
of resilience and that other indexes have been proposed [28–30], however it is used in this
paper for the following reasons: (1) it is widely used in the literature on water distribution
systems optimization and (2) it enables a comparison with the work of Wang et al. [26].
The resilience index is defined as the ratio of power dissipated in the network to the
maximum power that would be dissipated in order to satisfy the design demand and head
requirements at the junction nodes.
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The objectives to be optimized to obtain the optimal WDS design solution are pre-
sented in mathematical form as Equations (1) and (2), where the cost is minimized while
maximizing the resilience index.

Min Cost = ∑N
ij Cij × Lij+∑ Cp (1)

Max Ir =
∑nn

j=1 CjQj

(
Hj −Hreq

j

)
(

∑nr
k=1 QkHk + ∑

npu
i=1

Pi
γ

)
−∑nn

j=1 QjH
req
j

(2)

Cj =
∑

npj
i=1 Di

npj×max{Di} (3)

where Ir = network resilience; nn = number of demand nodes; Cj, Qj, Hj, and Hj
req = uniformity,

demand, actual head, and minimum head of node j; nr = number of reservoirs; Qk and
Hk = discharge and actual head of reservoir k; npu = number of pumps; Pi = power of pump i;
γ = specific weight of water; npj = number of pipes connected to node j; Di = diameter of pipe i
connected to demand node j.

2.2. Improved NSGA II

The NSGA II algorithm is widely used for solving multi-objective optimization prob-
lems. However, the quality of the solutions generated by the algorithm can be improved.
Therefore, the main objective of improving the NSGA II algorithm is to enhance the quality
of its solutions. This involves increasing the density of solutions, especially in the im-
portant regions of the Pareto front, such as the knee area, and improving the diversity of
solutions by expanding their range. To achieve this, the improved NSGA II introduces
novel improvements in both the diversity and convergence of the algorithm.

One of the main developments of the improved NSGA II algorithm is the implemen-
tation of new methods for offspring population generation. Unlike the original NSGA II,
which uses all parent population solutions in tournament selection to generate the offspring
population, the improved NSGA II focuses on specific solutions among the nondominated
solutions found so far to generate new solutions in addition to the original method. By fo-
cusing on specific solutions, the improved NSGA II can generate better candidate solutions,
ultimately leading to a better quality of solutions in the Pareto front.

The improved NSGA II algorithm introduces different generation methods based
on [27], which is crucial to achieving fast convergence and a high diversity of solutions
that are uniformly distributed in the objective space. The different generation methods,
including those that target the maximum and minimum regions of the Pareto front and
the uncrowded area of the front, are used to increase the range and diversity of solutions.
The knee area of the Pareto front is given special attention, as it is a critical region with
solutions that exhibit a small improvement in one objective causing a large deterioration in
the other.

2.3. Generation Methods

The algorithm generates an offspring population using four main processes (Gs), which
are selected in each iteration starting from different starting iterations (ITm) proposed to
control the process. Additionally, different probabilities (represented by Ps) are used to
select the generation methods. The selection of these probabilities aims to produce new
solutions that can perform a global search in the early stages of the process and then include
a more localized search towards the end in addition to the global search.

The following are the types of searching methods presented as offspring generation
methods:

1. G1 method: This is the original method used in NSGA II. It involves selecting N
(population size) number of parent populations and N offspring populations, evalu-
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ating their objective values, and sorting them based on non-dominated sorting and
crowd distancing. The parent populations are then randomly paired to create child
populations through crossover and mutation.

2. G2 method: This method saves the new offspring population generated in each
iteration to the archive. The archive contains all the populations generated from the
start of the iteration. Parent populations are randomly selected from the archive to
create new offspring populations through crossover and mutation.

3. G3 method: This method focuses on specific areas of the Pareto front, such as the
extreme and uncrowded areas shown in Figure 1. At each iteration, a number of
points are selected from the required region, and N (population number) offspring
populations are generated from these points.
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If the selected points are from the maximum region, the offspring population is
generated via bound type crossover and weighted average with the maximum possible
diameter as in Equation (4), where Rand is a random number between 0 and 1.

Offspring = Rand × parent + (1 − Rand) ×Maximum diameter, (4)

On the other hand, if the selected points are from the minimum and uncrowded areas,
the offspring population is generated in Equation (5) by randomly assigning a diameter
value of the next higher or lower possible diameter value to the selected pipes, where
“gene” is the randomly selected pipe.

Gene = rand(), (5)

Offspring(gene) = Parent(gene) ± 1,

where Gene = randomly generated number, Parent = selected points, Offspring=generated
population from selected points.

4. G4 method: This method generates offspring populations using the knee area of the
Pareto front as the parent population. The knee is found by calculating the Euclidean
distance of all Pareto front points to the corner, shown in Figure 1 and selecting points
with the least distance. After selecting the parent population, the offspring population
is generated using Equation (5).
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2.4. Pseudocode

The pseudocode provided in Figure 2 outlines the steps of the improved NSGA
II procedure. The maximum number of iterations is divided into four stages and each
stage includes a different combination of generation methods, as shown in Figure 3. The
algorithm starts with the original NSGA II method and includes additional methods one
by one into each stage. In the early phases, only the G1 method is used, but as the second
stage is initiated, G2 is introduced. In the third stage, G3 becomes available for use, and
likewise, G4 is brought into the fold in the fourth stage.
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Figure 3. The available options of generation methods at every stage throughout the algorithm.

In each iteration, a generation method from the available methods in each stage is
picked using a probability decision factor, and that method generates N offspring popula-
tions in that iteration. The number of function evaluations each method uses is determined
by the probability assigned to each method and the stage’s starting iteration. The four
generating processes can be selected according to the starting iteration number (ITm1,
ITm2, ITm3, ITm4) and probabilities (P1, P2, P3, P4). These additional parameters (ex-
plained below in detail) are used to control the number of function evaluations used by the
generation processes and the results they can contribute.
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2.5. Parameters

The selection of the four generating processes is based on three additional parameters
to the NSGA II algorithm: the starting iteration number (ITm1, ITm2, ITm3, ITm4), proba-
bilities (P1, P2, P3, P4), and the number of selected points as a percentage of population
size. These parameters are used to control the number of function evaluations used by the
generation processes and the results they can contribute.

1. ITm1—iteration number where the G1 starts, which is equal to zero.
2. ITm2—iteration number where the G2 starts.
3. ITm3—iteration number where the G3 starts.
4. ITm4—iteration number where the G4 starts.

The ITm parameter represents the iteration number at which the generation methods
start and can take values from 0 to 1, where 0 represents the beginning of the iterations
and 1 represents the end of the iterations. The starting iteration of a generation method is
determined by multiplying ITm by the maximum number of iterations as in Equation (6).
For example, the starting iteration of G2 can be calculated as ITm2 multiplied by the
maximum number of iterations.

Starting iteration of a generation method = ITm ×maximum number of iterations (6)

where ITm = a parameter between 0 and 1.
The other parameter is the probability assigned to each method to be selected. In each

iteration, a random number between 0 and 1 is generated to determine the probability of
selecting a particular generation method.

1. P2—probability of G2 being selected starting ITm2.
2. P3—probability of G3 being selected starting ITm3.
3. P4—probability of G4 being selected starting ITm4.

The probabilities of G2, G3, and G4 are determined by P2, P3, and P4, respectively. The
probabilities of these methods are constant from their starting iteration to the maximum
number of iterations. The probability of G1, on the other hand, changes throughout the
stages. In stage one, G1 is the only method used, and therefore has a probability of 1. In
stage two, there are two options: G2 with a probability of P2 and G1 with a probability
of (1 − P2). Similarly, in stage three, there are three options: G2 with a probability of
P2, G3 with a probability of P3, and G1 with a probability of (1 − P2 − P3). The sum of
probabilities for G2, G3, and G4 is less than 1, with G1 taking up the remaining probabilities
according to the stage.

As an instance, during stage 3, the selection of a method from G1, G2, and G3 is
determined based on specific conditions outlined in Equations (7) through (9). This involves
generating a random number between 0 and 1. If this number is less than (1 − P2 − P3)
as in Equation (7), G1 is selected. If the random number falls between (1 − P2 − P3) and
(1 − P3) as in Equation (8), G2 is chosen. On the other hand, if the random number is
greater than (1 − P3) as in Equation (9), G3 is the selected method.

0 < Rand < (1 − P2 − P3) (7)

(1 − P2 − P3) < Rand < (1 − P3) (8)

(1 − P3) < Rand < 1 (9)

In addition, the number of points selected by each method is a crucial parameter in
the improved NSGA II algorithm. G3 and G4 choose the parent population from the search
region and generate the offspring population. The number of points to be selected must
be determined in advance. The number of selected points is equal to sp multiplied by
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the population size (N) as in Equation (10), where sp is number of selected points as a
percentage of the population size (N).

Number of selected points = sp × N (10)

1. sp3max—number of selected points in the maximum region as percentage of N.
2. sp3min—number of selected points in the minimum region as percentage of N.
3. sp3uc—number of selected points in the uncrowded region as percentage of N.
4. sp4—number of selected points in the knee area as percentage of N.

G3 selects three types of points based on three additional parameters: P3max, P3min,
and P3uc. These parameters control the number of selected points in the maximum region,
minimum region, and uncrowded region, respectively.

The pseudocode of generation methods is depicted in Figure 4, where Rand2 is a
second random number between 0 and 1.
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1. When the iteration reaches ITm2 = 500, G2 is added as an option, and the line for G2 
begins to increase. The slope of G1 becomes lower at this point since G2 is also in use. The 
low slope of G2 is related to the probability it is given, which is lower than that of G1 (P1 
> P2). At the iteration of ITm3 = 750, G3 is introduced, and the line for G3 starts increasing. 
The slope of G3 is higher than G2 because it has a higher probability (P3 > P2). Lastly, G4 
is included at the last stage when the iteration is at ITm4 = 1250, and the line for G4 begins 
to increase. The slope of G4 is higher than G2 but lower than G3, indicating that its prob-
ability is higher than G2 but lower than G3. As new methods are added, the slope of G1 
decreases, and the probability of G1 is a function of the other probabilities (1 − P2 − P3 − 
P4). 

IF (Rand < P2 AND It > ITm2) THEN 
      G2: Generate offspring using randomly selected points from archive. 
ELSEIF ((P3+P2) > Rand > P2 AND It > ITm3) THEN 

Rand2=rand(); 
IF (Rand2<P3min) 

Select sp3min *N 
ELSEIF ((P3max+ P3min) > Rand2 > P3min) 

Select sp3uc *N 
 ELSE  

Select sp3max*N 
      G3: Generate offspring population from the selected points.  
ELSEIF (It > ITm4 && (P4+P3+P2) > Rand > (P3+P2)) 
     Select sp4 *N 
     G4: Generate offspring using the selected points in the knee area. 
ELSE 
     G1: Generate offspring using ALL points in parent population. 

Figure 4. The Pseudocode of random process of selecting generation methods.

The algorithm starts by using G1 in the initial iterations to create the Pareto front and
initialize the processes. This generation process can be revisited throughout the entire
iteration. Then, G2 is introduced, and it brings back some populations from the archive that
were eliminated in the process but may have the potential to find better solutions when
combined with the current population. Once a front is established, the algorithm uses G3
and G4 to target specific regions of the front. G4 is executed last because it requires an
intensive evaluation, and its characteristics are appropriate for the knee region late in the
progression of the front. These strategies help the algorithm converge more quickly to the
Pareto optimal front and increase the range of solutions it can find.

In Figure 5, the generation methods used in the algorithm are illustrated for an example
of one run, along with the number of iterations each generation was employed. At the
outset, G1 is employed at every iteration, and the line for G1 increases with a slope of 1.
When the iteration reaches ITm2 = 500, G2 is added as an option, and the line for G2 begins
to increase. The slope of G1 becomes lower at this point since G2 is also in use. The low
slope of G2 is related to the probability it is given, which is lower than that of G1 (P1 > P2).
At the iteration of ITm3 = 750, G3 is introduced, and the line for G3 starts increasing. The
slope of G3 is higher than G2 because it has a higher probability (P3 > P2). Lastly, G4 is
included at the last stage when the iteration is at ITm4 = 1250, and the line for G4 begins to
increase. The slope of G4 is higher than G2 but lower than G3, indicating that its probability
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is higher than G2 but lower than G3. As new methods are added, the slope of G1 decreases,
and the probability of G1 is a function of the other probabilities (1 − P2 − P3 − P4).
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2.6. Case Studies

To test the improved algorithm in this study, five networks of different sizes were used.
These networks are taken from the benchmark case studies of [26] and range from small to
intermediate in size. Table 1 summarizes the benchmark problems, including the number
of water sources, decision variables, pipe diameter options, the search space calculated
as pipe diameter options to the power of decision variables and the number of function
evaluation (NFE) used.

Table 1. Benchmark network characteristics, WS = water sources, DV = decision variables, PD = pipe
diameter options, NFE = number of function evaluation.

Problem Name WS DV PD Search Space NFE

Two-Loop Network TLN 1 8 14 1.48 × 109 100,000
Hanoi Network HAN 1 34 6 2.87 × 1026 600,000

GoYang Network GOY 1 30 8 1.24 × 1027 600,000
Fossolo Network FOS 1 58 22 7.25 × 1077 1,000,000
Pescara Network PES 3 99 13 1.91 × 10110 1,000,000

In [26] different computational budgets are used for the networks based on their size
and complexity. To ensure fair comparison, the same computational budget is used for
each network in this study. The problems are solved using different population sizes, with
10 runs for each network in three groups, totaling 30 runs for each problem. The results
from each run are combined and sorted to obtain the final non-dominated Pareto front.
The benchmark problems are of varying complexity, and therefore different computational
budgets are required for different cases. This approach helps to ensure that the results are
reliable and comparable across different networks and problems.

In the paper of [26], the Pareto front for each multi-objective optimization problem was
obtained by collecting raw data reported by each multi-objective evolutionary algorithm
(MOEA) for 30 runs. Duplicates in the dataset of each group, which were obtained using a
specific population size, were checked, and removed. The data from different groups were
then merged and duplicates were checked and removed once again. The non-dominated
sorting procedure was applied to the aggregated dataset to produce the best Pareto front
obtained by the current MOEA.
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For each problem, the Pareto front obtained by each MOEA was first aggregated, and
duplicates in the merged dataset were checked and removed. The non-dominated sorting
procedure was then used to generate the best-known Pareto front of the current problem
that is presented in [26] and it will be referred in this study as all evolutionary algorithms
(AEAs). Lastly, the contribution from each MOEA to the best-known Pareto front was
identified. This process ensured that the AEA was obtained by considering the results from
all MOEAs and removing duplicates.

The Best-Known Pareto Front (BKPF) solutions for these problems, which are pre-
sented on the Exeter university website “https://engineering.exeter.ac.uk/research/cws/
resources/benchmarks/pareto/ (accessed on 6 July 2023)”, were obtained through a sec-
ondary stage of extensive computation on the Pareto front initially obtained by five state-
of-the-art MOEAs. For the smaller networks, the true Pareto front was obtained through
full enumeration, while for the larger networks, the goal was to approximate the true
Pareto fronts.

The improved version of NSGA II is used to generate a Pareto front. The dataset from
10 independent runs with the same population size is collected, and the results are merged
to remove any duplicates. Next, the non-dominated sorting method is applied to select
the best solutions and form the Pareto front of the group. This process is repeated for each
population size to obtain the Pareto front for each group. Finally, the Pareto front for each
population size (3 groups) is merged, and any duplicates are removed. The non-dominated
sorting method is then applied to the merged solutions to produce the final Pareto front.

3. Results

The proposed methodology was tested on benchmark case studies using the same
optimization model and hydraulic simulator to enable fair comparison. Table 2 presents the
results obtained from 30 runs using the improved NSGA II and compares them to the three
different results for the five case studies (CS). The first set of solutions, as described in [26],
consists of the results obtained by five state-of-the-art MOEAs within the computational
budget. By combining and eliminating duplicates from these results, the values for the
AEA column were determined. The second source of solutions is the Best-Known Pareto
Front (BKPF) solutions for these problems, which were obtained after extensive calculations
on the raw solutions initially obtained by the same five MOEAs as in the AEA.

Table 2. Results of the improved NSGA II and the five MOEAS in [26] CS = case study;
CWS = center for water systems; BKPF = best known pareto front; AEA = all the evolutionary
algorithms; TNDS = total non-dominated solutions from improved NSGA II; ENDS = equal to
BKPF; DS = dominated by BKPF solutions; NDS = solutions that are non-dominated to BKPF;
BNDS = solutions that dominated by BKPF, TF = True Front.

CS CWS
BKPF

Wang et al. [26] Results Improved NSGA II-Results

NSGA-
II
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AGAM Borg AEA TNDS ENDS DS NDS BNDS

TLN 114 TF 77 64 64 76 65 77 114 114 0 0 0

HAN 575 39 8 9 35 10 39 716 10 115 664 40

GOY 489 29 2 39 57 15 67 341 303 97 27 11

FOS 474 48 10 42 21 31 140 532 3 58 39 490

PES 782 82 58 24 41 49 215 247 1 437 100 146

The last five columns of Table 2 contain the results obtained by the improved NSGA II
algorithm using NFE (number of function evaluations) limitations. The number of solu-
tions obtained by comparing the improved NSGA II solutions with BKPF were recorded,
including the number of solutions that are equal to BKPF (ENDS), the number of solutions
obtained by the improved NSGA II that are dominated by the BKPF solutions (DS), the

https://engineering.exeter.ac.uk/research/cws/resources/benchmarks/pareto/
https://engineering.exeter.ac.uk/research/cws/resources/benchmarks/pareto/
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number of solutions that dominate BKPF (BNDS), the number of solutions obtained by
the improved NSGA II that are nondominated to the BKPF (NDS), and the total number
of nondominated solutions obtained by the improved NSGA II (TNDS) for each of the
case studies. The aim of these comparisons is to evaluate the effectiveness of the proposed
improvement to the NSGA II algorithm in obtaining a good approximation of the true
pareto front with the same function evaluations than other state-of-the-art MOEAs.

In the context of evaluating the performance of the proposed improved NSGA II
algorithm, it is crucial to consider the benchmark Pareto fronts solution, which serves as
a reference for the quality of the results obtained. Therefore, the results obtained by the
improved NSGA II will be compared with its predecessor, the original NSGA II, using the
same computational budget. This comparison is the primary point of comparison, as it
helps determine if the improved NSGA II outperforms the original NSGA II under the
same computational budget. If the improved NSGA II can outperform the original NSGA
II, it would be a significant improvement.

After comparing the results of the improved NSGA II with the original NSGA II, the
algorithm’s performance will be further evaluated by comparing it to AEA and BKPF. AEA
and BKPF are both combinations of the five MOEAs, but it is essential to note that the
BKPFs are obtained with a much larger computational budget than the number of function
evaluations (NFEs) used for the improved NSGA II. By conducting this comprehensive
evaluation, it is possible to determine the effectiveness and efficiency of the improved
NSGA II algorithm in solving the benchmark problems, considering the quality of the
solutions obtained by the five state-of-the-art MOEAs and the extensive computational
effort invested in obtaining the BKPFs. This approach helps to provide a more accurate
assessment of the effectiveness and efficiency of the improved NSGA II algorithm in solving
the benchmark problems.

In the benchmark case studies, the first set of case studies, TLN, the true Pareto
solution represents the Pareto front that was obtained by enumerating the entire solution
space of the problem. Thus, no better solution can be found for this network. With the
proposed improved NSGA II algorithm, all the true Pareto front points were found within
the computational budget. On the other hand, the original NSGA II algorithm only finds
77 points out of the 114 Pareto front solutions, even when combining all the five MOEAs,
the number of solutions found is still lower than that of the BKPF. With the improvements
made to the NSGA II algorithm, all the possible solutions, the true Pareto front solutions,
were found. In terms of dominance, the DS (dominated solutions), NDS (nondominated
solutions), and BNDS (solutions dominated by BKPF) are all equal to zero because there are
no solutions that can dominate the true Pareto front. Furthermore, since all the solutions
are found, there are no solutions that are dominated by BKPF.

The performance of the improved NSGA II algorithm was evaluated on two medium-
sized networks: HAN and GOY. For the HAN network, the BKPF was found to be 575, and
using the improved NSGA II algorithm, a total of 716 (TDNS) solutions were found. Among
these 716 solutions, 10 are equal to the BKPF and the non-dominated solutions found by
the improved NSGA II algorithm were 664, which is higher than the BKPF. Additionally,
40 solutions that dominate the BKPF were found by the improved NSGA II algorithm,
which is higher than the 39 solutions found by the original NSGA II and AEA. For the GOY
network, the improved NSGA II algorithm found a total of 341 solutions (TDNS). Among
these solutions, 303 were equal to the BKPF and 27 non-dominated solutions compared to
the BKPF were found. The number of solutions found by the improved NSGA II algorithm
is much higher than the solutions found by the original NSGA II algorithm, which is only
29 solutions, and AEA, which found 67 solutions. The improved NSGA II algorithm was
able to find 11 solutions that dominate the BKPF. The improved NSGA II algorithm found
solutions lower than the BKPF, but it is important to note that the BKPF was obtained
through an extensive computational effort that utilized a combination of five different
state-of-the-art multi-objective evolutionary algorithms (MOEAs).
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The FOS and PES networks are two intermediate-sized cases with higher solution
spaces compared to previous cases. For the FOS network, the algorithm found 532 so-
lutions, which is higher than the 474 solutions found by the BKPF and 91% higher than
the 48 solutions found by the original NSGA II and 140 solutions found by the AEA (a
combination of the five MOEAs). The solutions that are equal to the BKPF are only three of
the solutions found, and only 39 were non-dominated solutions. However, the solutions
that dominate the BKPF compromise 490 solutions. This suggests that from the solutions
found by the improved NSGA II, there are significantly more solutions that dominate
the BKPF.

Another intermediate network is PES with three sources, which increases the difficulty
of solving the optimization. The improved NSGA II found 247 solutions, which is higher
than the 82 solutions found by the original NSGA II and 215 AEA solutions. We found
100 non-dominated solutions compared to BKPF solutions, and 146 solutions dominated
the BKPF. From the solutions found, 59% dominated the BKPF solutions and most of the
solutions found are better.

To evaluate the quality of the solutions obtained by the improved NSGA II algorithm,
the solutions are compared with the benchmark Pareto fronts (BKPFs). In some cases, parts
of the front are zoomed in to highlight the relationship between these two sets of solutions.

The graphs presented below depict the results from the improved NSGA II algorithm
with the new methods and the best-known Pareto front. The blue points on the graphs
represent the best-known Pareto front of networks presented in [26]. The yellow points
represent the solutions found by the improved NSGA II algorithm with the new methods
(PF). The red points indicate the total number of non-dominated solutions compared to
the BKPF.

Figure 6a displays the result of the TLN network obtained by utilizing the improved
NSGA II algorithm with the new methods and comparing them to the best-known Pareto
front. It can be observed that there is a complete overlap between all the true Pareto front
points and the solutions obtained by the improved NSGA II algorithm. This is because the
improved NSGA II algorithm has successfully found all the true Pareto optimal solutions.

As can be seen in Figure 6b, for the HAN network the new method has expanded the
range of the BKPF and increased the number of solutions. Specifically, the improved NSGA
II has discovered more points with minimum resilience and cost, as highlighted in the
zoomed-in portion. In the maximum region, the highest possible resilience for HAN has
already been achieved, which is 0.3538, and further expansion towards the maximum is not
feasible. In the minimum region, 33 additional solutions have been identified. Since more
solutions than the BKPF have been uncovered, it indicates that the density of solutions in
the remaining part of the Pareto front has been increased.

Figure 6c shows the results of GOY network, illustrating that the improved NSGA II
algorithm has successfully generated solutions across the entire range of the pareto front for
the GOY network. The improved NSGA II also outperforms the original NSGA II algorithm
in terms of solution density, having found a greater number of solutions.

The results obtained from the improved NSGA II for FOS network, Figure 6d reveal
that a considerable number of solutions that dominate the BKPF are found, leading to
substantial improvements across most parts of the pareto front. Zooming in on specific
parts of the front, it becomes apparent that a significant gap exists between BKPF solutions
and the improved NSGA II solutions in the lower resilience region and the knee area,
implying that for the same cost better resilience can be achieved. A significant enhancement
is observed in the knee area, which is a crucial part of the pareto front. The fourth method
(G4) is specifically designed to address this region and generate more solutions. The
positive impact of the G4 method can be clearly observed in this network as the solutions
have demonstrated significant improvement.
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In comparison to the BKPF, the results of the improved NSGA II for PES network
in Figure 6e show that there exist some uncovered sections of the front due to the lower
number of solutions found by the improved method. However, it has been observed that
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the improved NSGA II has found solutions that were not discovered by the original NSGA
II. In Figure 7 presented from [26], the contributions of each MOEA to the final result can be
seen, and it is evident that the original NSGA II found solutions only in the lower to middle
part of the pareto front. On the other hand, the improved NSGA II solution indicates that
solutions have been discovered in the maximum region of the front. This is particularly
notable in the zoomed-in section, which is located around the knee area, where densely
populated solutions are found, and those solutions dominate the BKPF.
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4. Discussion

Table 2 presents the results of the improved NSGA II algorithm and compares them
in terms of the number of solutions obtained for each of the five case studies. The results
demonstrate that the improved NSGA II performs well for all case studies since it has
found a large number of total non-dominated solutions. In multi-objective optimization
problems, the density and diversity of the solutions across the Pareto front and convergence
to the best possible solutions are important factors to consider.

In general, it was observed that the improved NSGA II algorithm discovered a greater
number of solutions compared to the original NSGA II for all benchmark networks. Fur-
thermore, the improved NSGA II found more solutions than the combination of five
state-of-the-art MOEAs all networks. Even though the BKPF was discovered through exten-
sive computation and the use of multiple MOEAs, the improved NSGA II was able to find
more solutions for the TLN, HAN, and FOS networks, which is a significant achievement
that demonstrates its effectiveness in solving multi-objective optimization problems. In
addition, the improved NSGA II was able to increase the range of the pareto front for
HAN and discover a significant number of solutions that dominate the BKPF, especially for
intermediate-sized networks, resulting in a better pareto front.

Moreover, the improved NSGA II found solutions in the parts of the pareto front
that were not found by the original NSGA II, thereby improving the diversity of solutions
that can be discovered. These findings suggest that the improved NSGA II algorithm is a
promising approach for solving multi-objective optimization problems and can be applied
to a wide range of real-world applications.

It is important to note that although the number of solutions found by the improved
NSGA II is lower than that of the BKPF for PES network, many of the solutions found are
better than the BKPF solutions. However, a larger computational budget is required for the
improved NSGA II algorithm to make a fair and complete comparison with the BKPF in
terms of the number of solutions. In summary, the improved NSGA II algorithm shows
promising results in solving intermediate-sized problems such as FOS and PES networks,
and further improvements can be made by increasing the computational budget.

The results of the improved NSGA II algorithm presented in this study are highly
promising and warrant further exploration in the field of multi-objective optimization. Al-
though the algorithm has demonstrated success in solving a two-objective problem, there is
room for improvement through further parameter calibration. Future work should focus on
fine-tuning the implementation parameters to optimize the algorithm’s performance on all
benchmark networks. This can be achieved through extensive testing and experimentation,
leading to a more efficient and effective algorithm.
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Furthermore, it is recommended that additional tests be conducted on the remaining
benchmark networks to further evaluate the algorithm’s capabilities and limitations. These
tests will allow researchers to gain a deeper understanding of the algorithm’s performance
across a wider range of problem sets. In addition, further research could be conducted to
define a new best-known Pareto front through extensive computation.

This study compared the solutions obtained using the improved NSGA II algorithm
with the original NSGA II and AEA in terms of the number of solutions and graphical
representation. However, for a more comprehensive analysis, it may be useful to evaluate
these solutions using additional metrics such as data dispersion. To achieve a better
comparison, future research could consider using alternative metrics such as box plots to
provide insight into the spread of solutions in the front.

5. Conclusions

This research presents an improved version of the NSGA II algorithm that can effec-
tively tackle multi-objective optimization problems. The NSGA II algorithm is a well-
established state-of-the-art approach that has been widely used in the field of multi-
objective optimization. The improved NSGA II algorithm employs various generation
processes motivated by MOSA-GR to enhance the optimization search. The algorithm
is designed to target different regions of the Pareto front to achieve better convergence,
diversity, and density. The four generation processes, namely G1, G2, G3, and G4, serve
different purposes, such as increasing diversity, searching for specific parts of the Pareto
front, and finding solutions in the knee area. By utilizing different generation processes,
the algorithm can access parts of the Pareto front that were previously unobtainable using
a single generation process.

The improved NSGA II algorithm was tested on a well-known two-objective WDN
problem from the literature, and the results were compared with those obtained by the
original NSGA II, the combination of five state-of-the-art MOEAs and with the best know
pareto front. The comparison demonstrated that the proposed improvement to the NSGA
II algorithm was effective in finding more non-dominated solutions and dominating more
solutions than the original NSGA II algorithm and other MOEAs in most cases. The
algorithm was able to find all true Pareto front solutions for the small case study, widen
the range of solutions for the intermediate-sized problem (HAN), and found solutions that
dominate the best-known Pareto front, particularly in the knee area of the Pareto front for
the intermediate-sized networks.

In conclusion, the proposed modifications to the NSGA II algorithm have the potential
to be a significant contribution to the field of multi-objective optimization. The improved
NSGA II algorithm is capable of finding solutions that cover all parts of the Pareto front with
a single algorithm without increasing the computational effort. The good performance of
the improved NSGA II algorithm compared to the original NSGA II algorithm demonstrates
the effectiveness of the proposed approach.

In summary, the improved NSGA II algorithm exhibits significant promise in tackling
multi-objective optimization problems. Subsequent research endeavors should concentrate
on enhancing its implementation and assessing its performance across a broader spectrum
of problem sets, while considering larger computational resources.
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