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Abstract: The operation of water distribution systems (WDS) is an energy-intensive process, which
is subject to constraints such as consumer demands, water quality, and pressure domains. As such,
tracing an operation policy in which constraints are met while energy costs are minimized, is a
foremost objective for water utilities. Given the inherent uncertainties in WDS operation and the
importance of supply continuity, it is essential to find an operational strategy that is robust against
a wide range of circumstances. One promising approach for optimization under uncertainty is
robust optimization (RO), which assures a robust (feasible) solution to realizations of the uncertain
parameters, within predefined bounds. This study presents an RO-based method for optimizing
pump scheduling under uncertainties of consumer demands and pumping costs. The method can
capture various types of correlations between the uncertain parameters, thus better reflecting the
uncertain nature of WDS operation. The developed methodology is demonstrated in two case studies
with different levels of complexity. The impacts of uncertainty levels and correlation coefficients are
analyzed to demonstrate their implications on operation policy. The results show the advantages of
using RO with tradeoffs between costs and constraints satisfaction.

Keywords: water distribution systems; pumps scheduling; demand uncertainty; cost uncertainty;
robust optimization; temporal–spatial correlation

1. Introduction

The optimal operation of water distribution systems is one of the most researched prob-
lems in WDS analysis. The mathematical complexity of the problem and the importance of
optimal operation to WDS management result in a large body of work, published in recent
decades [1]. While the efforts around this challenge have yielded a variety of optimization
models and techniques, most of them account for deterministic approaches where all the
problems’ parameters are assumed to be known. However, WDS operation consists of
several inherent uncertainties. Some of these uncertainties are the result of physical events
in the system such as consumers’ demands [2], transient hydraulics [3,4], hydrology-related
events that affect water availability [5], pump failures or degradation [6], and electricity
prices [7]. Other uncertainties are the outcome of missing information causing oversight
results of optimization models such as pipes roughness coefficients, and pumps and valves
curves. In many cases, the uncertain elements in the system are correlated between them,
making the estimation of the joint probabilities highly complex and, therefore, difficult
to solve. Thus, there is a great need for finding a methodology for making design and
operational decisions under uncertainty [8]. Traditionally, uncertainty is modeled based on
probability theory with an assumption that the probability density functions (PDFs) are
known. In that case, the performance of systems can be estimated by using probability
terms. More recent approaches no longer assume that PDFs exist or are known and treat
uncertainty as a set of plausible scenarios [9]. This novel approach has been introduced by
Walker, et al. [10] as deep uncertainty and it is commonly used in environmental systems
and water resources analysis. In the case of deep uncertainty, robustness is replacing proba-
bility to describe the systems’ ability to maintain its functionality over different scenarios.
Accordingly, robustness is a desirable objective when optimizing WDS under uncertainty.
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1.1. WDS Operation under Uncertainty

Few approaches were suggested to tackle the challenge of WDS operation under
uncertainty. For example, a scenarios tree stochastic programming was suggested by [11].
This approach was based on generating a tree of discrete scenarios with known probabilities
and then optimizing the objective function for the weighted scenarios. Constraints were
added to maintain the mass balance in reservoirs between consecutive time steps and
scenarios. Thus, the problem dimensions increased exponentially. Napolitano et al. [12]
presented a similar scenario-based approach that included a risk term in the objective
function to minimize the probability of violating the constraints while minimizing the
pumping costs. To overcome the dimensionality challenge in scenarios-based approaches,
Schwartz et al. [13] presented a method that limited the scenario's tree size. In their
method, each scenario was first solved individually, then the decision variables in each
time step were clustered to represent similar decisions. This allowed the pruning of similar
branches in the tree that eventually lead to similar solutions. Finally, the reduced tree
was solved with stochastic programming. Another method that was used to tackle WDS
operation under uncertainty is chance-constrained optimization (CCO). In CCO, uncertain
constraints are formulated as soft constraints that are satisfied for a predefined portion
of the total scenarios [14]. CCO problems are still an unsolved challenge, for two main
reasons: (1) difficulty to estimate probabilities of a point (solution) in the search space,
and (2) non-convexity of the search space [15]. Two common methods to tackle CCO
are analytic approximations to deterministic, and sampling methods. In the context of
WDS optimal operation, CCO was suggested by [16]. In their work, they optimized the
operation of a pumping station against a closed-end pipe (with no storage) under uncertain
demands. While no storage is available, the pump station flow had to be larger or equal
to the uncertain demands. These constraints were relaxed by using a normal distribution
approximation and then the problem was solved analytically. Grosso et al. [17] suggested
an analytical approximation for the joint probabilities of multiple constraints based on
Boole’s inequality. Sampling methods were also in use for CCO, for example, Kim et al. [18]
used sampling stochastic dynamic programming to optimize the operation of a multi-
reservoir system.

1.2. Robust Optimization

Robust optimization (RO), which solves optimization under uncertainties efficiently [19],
is well suited for WDS optimization problems. RO is different from the above methods in
the sense that it does not return the optimal solution over a probabilistic space (e.g., expected
optimal solution) but rather a feasible solution for any realization of the uncertainty within
specific bounds. In other words, RO aims at the worst-case scenario and optimizes the
decision variables accordingly; hence, the solution is robust (feasible) for any plausible
scenario. Recently, RO was used for several water resources problems and proved to have
the potential to solve highly complex problems, such as optimal system design [20–22],
optimal multi-year water allocation [23], reservoir operation [24], and flood control [25]. A
study presented by [26] already pointed to the potential of RO for WDS operation by solving
a small case study (Anytown) with demand uncertainty. RO is based on a continuous linear
formulation of the WDS operation problem, it is worth mentioning that such approximation
is not valid for some conditions as detailed in [27]. To demonstrate the formulation of the
RO problem, consider general linear programming with uncertainties:

Z = min
x

C(ξ)Tx (1)

Subject to : A(ξ)Tx− b(ξ) ≤ 0 (2)

where x is a vector of decision variables, and ξ is a vector of random variables representing
perturbations from nominal values. For example, if ai,j is an uncertain parameter, repre-
senting the j coefficient in constraint i (entry i,j in the matrix A), then ai,j(ξ) = a0

i,j + ∆i,jξi,j.
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Where a0
i,j is the nominal value (mean), ∆i,j is the uncertainty level, and ξi,j is the random

perturbations. To achieve robust feasibility, which means a feasible solution for any real-
ization of the random variables, the left-hand-side (LHS) of the inequality constraint (2) is
maximized over ξ. The rationale behind this is that if the constraint holds for the maximized
LHS, it will hold for any value of ξ. Or in other words, if the solution is feasible even
against the worst-case scenario, it will meet the constraints in any other (better) scenario.
The result is a min-max formulation which is completely deterministic after solving the
inner optimization problems over ξ. The equivalent deterministic is obtained by solving the
max problems in Equations (3) and (4), and it is referred to as robust counterpart (RC) [19].

Z = min
x

[
max
ξ∈U

C(ξ)Tx
]

(3)

Subject to : max
ξ∈U

[
A(ξ)Tx− b(ξ)

]
≤ 0 (4)

where U is a set that defines the feasible region of the random variables ξ. For exam-
ple, in a box uncertainty such that ξi,j ∈ [−1, 1], an uncertain parameter is defined as:

ai,j(ξ) ∈
[

a0
i,j − ∆i,jξi,j, a0

i,j + ∆i,jξi,j

]
. In this case, the random perturbations of each con-

straint are independent of other constraints, where the meaning is that no correlation
between the random variables is assumed. Although such a modeling strategy has the
advantages of simplicity and maintaining the problem linearity, the assumption of no
correlation between random variables does not hold in real-life problems and results in
over-conservative solutions. To overcome the conservatism in box uncertainty sets, Ben-Tal
and Nemirovski [28] suggested an Ellipsoid uncertainty set. The ellipsoid set can be seen
as a subset of a box set that does not include all scenarios that may happen. In other
words, most extreme scenarios where all the random variables obtain their worst values
simultaneously are left out. This approach better reflects the real behavior of uncertainty,
where the uncertain parameters are correlated; hence, very extreme scenarios are very rare.
A general mathematical description of an Ellipsoid set is described as a stretched ball with
a radius of Ω. For example, uncertainty set U for multiple correlated uncertain parameters
will be:

a(ξ) ∈
{

a0 − ∆ξ, a0 + ∆ξ, ‖ξ‖ ≤ Ω
}

(5)

where Ω is the Ellipsoid radius, a0 is a vector of the nominal values, and ‖ξ‖ is the L-2 norm
of the random variables vector ξ. To capture the correlations between random variables,
here the uncertainty level ∆ is not a scalar but an affine mapping matrix that defines
the correlation links between the different terms of ξ. The construction of the mapping
matrix ∆ is based on the covariance matrix of the different uncertain parameters [29]. More
explanations of the technique used for the mapping matrix construction are detailed later.
Previous RO studies in water resources research considered simple 1D correlations. For
example, demand correlation between different consumers at the same time [21] or extreme
rainfall events between two basins [25].

The current research aims to extend the concept of correlation modeling to include
cases where different elements of the system are correlated in more than one dimension.
This includes temporal correlations between different time steps and spatial correlations
of system elements. One example of such correlated uncertainty is consumer demands,
which are correlated in time and often to each other [2]. For example, given hot weather,
domestic, agriculture, and industrial demands are expected to be higher than the average
across different users and across different times of the day.

Another correlated uncertainty that is addressed here is the uncertainty of pumping
costs. The cost of pumping water using a given pump is affected by many factors such as
pump curve, efficiency curve, suction tank level, discharge tank level, hydraulic conditions,
electricity prices, which may be dynamic, technical conditions of the pump, and more. With
so many factors, and where some of them are not possible to estimate in real time, the actual
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operational costs of pumps are uncertain. Since the hydraulic conditions in the network
are temporal–spatial correlated [30], and electricity prices are also temporal correlated [31],
we can conclude that the operational costs that depend on these factors are also temporal–
spatial correlated. In this work, RO theory is used to develop a model for optimizing the
operation of WDS under such temporal–spatial correlated uncertainties. The rest of the
paper is organized as follows: below are the main contributions of this paper. Later the
methodology is described from a deterministic formulation of WDS operation through
uncertain WDS operation and then by the corresponding RC problem. The methodology is
illustrated in two case studies. The case study results are analyzed to present the tradeoffs
of WDS optimal operation under uncertainty and the impact of parameters such as level of
uncertainty and correlation coefficients. Finally, the method’s advantages are concluded.

The paper’s main contributions are:

• Implementing the RO theory on optimal operation problems with a better approxima-
tion of the system’s hydraulics.

• Illustrate the robust optimal operation methodology on a large real-life network.
• Address multiple uncertainties in the same problem including both objective and

right-hand side (RHS) uncertainties simultaneously.
• Model multi-dimensional correlated uncertainties to capture the temporal–spatial

correlations between the elements of the system.

2. Methodology

For formulating the problem, let xt,p,c be the portion of operation duration of pump
station (p) at time step (t), when operated with the unit combination (c); let vt,s be state
variables representing the volume in tank (s) at time step (t); and Qp,c, Pp,c are the corre-
sponding flow and power consumption of pump station (p) when operated with the unit
combination (c). si and so are the sets of pumps that, respectively, pump water in and out of
tank s. Elect is the electricity tariff at time step (t). δt is the duration of time step t (1 h), P is
the set of all pumping stations, S is the set of all storage tanks, and T is the number of time
steps. Using these notations, the deterministic minimal energy costs operation problem can
be described by the following linear programming (LP) presented in Equations (6)–(10). A
complete description of the formulation can be found in [32].

Z = min
x

T

∑
t=1

P

∑
p=1

C

∑
c=1

xt,p,c·Pp,c·Elect (6)

Subject to:

p

∑
p∈si

C

∑
c=1

xt,p,cQp,c −
p

∑
p∈so

C

∑
c=1

xt,p,cQp,c + (vt−1,s − vt,s) = dt,sδt ∀t ∈ T, ∀s ∈ S (7)

vs, min ≤ vt,s ≤ vs, max ∀t ∈ T, ∀s ∈ S (8)

vs, f inal ≤ vT,s ∀s ∈ S (9)

0 ≤
C

∑
c=1

xt,p,c ≤ 1 ∀t ∈ T, ∀p ∈ P (10)

It is possible to eliminate the tanks’ volume state variables in Equation (7) and re-
formulate the problem such that the volume in tank (s) at time (t) is represented with
the cumulative sum of inflows and outflows until time (t). The sum of flows until time
t is represented by an auxiliary index r such that ∑t

r=1 dr,sδt is the cumulative volume
of water consumed from tank (s) from the simulation start until time step (t). Similarly,
∑t

r=1 ∑C
c=1 xr,p,cQp,c is the cumulative volume pumped by pump station p until time t. This
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reformulation of constraint (7) also allows the decomposition from equality constraints into
two inequality constraints.

Z = min
x

T

∑
t=1

P

∑
p=1

C

∑
c=1

xt,p,c·Pp,c·Elect (11)

Subject to:

−
t

∑
r=1

p

∑
p∈si

C

∑
c=1

xr,p,cQp,c +
p

∑
p∈so

C

∑
c=1

xt,p,cQp,c ≤ v0,s − vs, min −
t

∑
r=1

dr,sδt ∀t ∈ T, ∀s ∈ S (12)

t

∑
r=1

p

∑
p∈si

C

∑
c=1

xr,p,cQp,c −
p

∑
p∈so

C

∑
c=1

xt,p,cQp,c ≤ vs, max − v0,s +
t

∑
r=1

dr,sδt ∀t ∈ T, ∀s ∈ S (13)

vs, f inal ≤ v0,s +
T

∑
t=1

p

∑
p∈si

C

∑
c=1

xt,p,cQp,c −
p

∑
p∈so

C

∑
c=1

xt,p,cQp,c −
T

∑
t=1

dt,sδt ∀s ∈ S (14)

0 ≤
C

∑
c=1

xt,p,c ≤ 1 ∀t ∈ T, ∀p ∈ P (15)

The current study addresses multiple uncertainties in the problem properties. The first
uncertainty is in consumer demand and the second is the uncertainty in pumping costs.
These two types of uncertainties are found in two parts of the problem. Demand uncertainty
is in the term d which is in the constraints RHS. The pumping cost uncertainty is in the
objective function coefficients. Accordingly, the constants representing the demands and
costs in problems (11)–(15) are replaced with affine functions as follows:

dt,s(ξ) = d0
t,s + ∆demξ (16)

Ct,p,c(ξ) = C0
t,p,c + ∆costξ , where C0

t,p,c = Pp,c·Elect (17)

where d0
t and C0

t,p,c are the nominal coefficients, ∆ is the affine mapping matrix and ξ is
the random variables representing the perturbation from the nominal values. ∆dem is a
mapping matrix for uncertain demands. It captures the correlations between time steps
(temporal) and between consumers (spatial). Similarly, ∆cost is a mapping matrix for the
uncertain pumping costs. We note that each of the uncertain parameters can be drawn
from a different probability distribution with different properties (mean and standard
deviation). The uncertainty properties of each element in the system together with the
temporal–spatial correlations are all captured within the mapping matrices to describe
the influence of random perturbations on the actual values of demands and costs. The
next section describes the construction of uncertainty sets based on these properties to
accommodate all the correlations and properties of the uncertain elements.

2.1. Uncertainty Sets

As mentioned above, the RO method does not require any knowledge of the PDFs of
the random variables ξ. Instead, the random variables are drawn from uncertainty sets
U which can be described by minimal stochastic information as the mean and covariance
of the nominal values. RO requires defining only the ranges (feasible area) for each
random variable. Ben-Tal and Nemirovski [28] presented the tractability advantages of
using Ellipsoid uncertainty sets and proved probabilistic bounds to meet the constraints
for a family of probabilistic distributions. Another advantage of ellipsoidal uncertainty
sets is that it is appropriate to model the correlation between different random variables.
Therefore, ellipsoidal sets were chosen to model uncertainty in this paper. It was shown
above, in Equations (16) and (17), that an uncertain parameter is described by a linear
combination of nominal values, and a mapping matrix multiplied by the random variable.
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Moreover, it is noted that the nominal values and mapping matrix can be predefined with
the first two statistical moments that usually can be concluded from historical records even
while the PDF itself is unknown.

The nominal value is often defined as the mean of the uncertain parameter, while
the mapping matrix is constructed according to the parameter covariance. Lastly, the
Ellipsoid radius Ω is a parameter that controls the level of risk, such that any value of ξ
that fulfills Equation (5) inequality is inside the Ellipsoid and hence satisfies the constraint.
Accordingly, large values of Ω will result in more robust solutions.

For example, constructing the demand uncertainty set of a single consumer, the
covariance matrix is constructed according to the demands standard deviation (STD) vector
σ. Where every entry in σ is the STD of demands at a single time step t, across different days.

σ = [σ1, σ2, . . . , σ24] (18)

To account for temporal correlation, a matrix ρ is introduced such that ρi,j is the
correlation coefficient between consumption at time step i and time step j. Accordingly, the
covariance matrix can be calculated by ρ and σ as follows:

Σ = σρσT =


σ2

1 ρ1,2σ1σ2 · · · ρ1,2σ1σT

ρ2,1σ1σ2 σ2
2

...
...

. . .
...

ρn,1σ1σT · · · · · · σ2
T

 (19)

The mapping matrix, noted ∆, is derived from the covariance matrix by using the
Cholesky decomposition:

Σ = ∆∆T (20)

If the spatial correlation is to be added, the above covariance matrix needs to be
extended to include the STD of the other consumers and correlation coefficients between
every pair of consumers and every pair of time steps. For that purpose, a matrix of size
(nT × nT) is initiated, where n is the number of correlated elements (consumers), and T
is the number of the simulation’s time steps. The matrix is organized such that the first T
rows and columns represent the first consumer, the next T rows and columns represent
the second consumer, and so forth. The diagonal block’s matrices are composed of the
covariance matrices of each consumer as described in (19), each with the shape of T × T.
The rest of the entries are the correlation coefficients between consumers and between
time steps. For example, in the following matrix (21), r12,11 is the correlation coefficient
between consumer 1 in time step 1 to consumer 2 in time step 1. Such a matrix (21) allows
the representation of the full relationships between consumers and time steps.

Σ =



 Σ1




r12,11 . . . r12,1T

...
. . .

...
r12,T1 r12,TT

 . . .


r1n,11 . . . r1n,1T

...
. . .

...
r1n,T1 r1n,TT




r21,11 . . . r21,1T

...
. . .

...

r21,T1 r21,TT


 Σ2

 . . .




 ...


 ...

 . . .

 ...




rn1,11 . . . rn1,1T

...
. . .

...

rn1,T1 rn1,TT




 . . .

 Σn





(21)
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The next step is implementing the constructed uncertainty sets in the uncertain problem
(11)–(17) and converting it to an equivalent deterministic problem (RC formulation).

2.2. Robust Counterpart

Robust optimization is based on converting an uncertain problem into a deterministic
equivalent problem at the worst-case point of the unknown parameters, this problem
is named RC. To achieve the RC formulation, the problem is reformulated with “hard
constraints”, that cannot be violated, at their worst point of the unknown parameters.
Then, the original problem is solved over the decision variables space. The meaning of
such formulation is that our solution will satisfy the constraints for any realization of the
uncertainty (any scenario). In this formulation, a solution that satisfies the worst scenario
would satisfy any other (better) scenario; hence, it would be in the feasible space. To convey
the problem into the worst case, inner optimization problems are introduced. For example,
given a general constraint, with uncertainty in constraint coefficients, a new maximization
problem is formulated:

(a0 + ∆ξ)
T

x ≤ b Original constraint (22)

max
‖ξ‖≤Ω

(a0 + ∆ξ)
T

x ≤ b RC constraint (23)

If the LHS of (23) is maximized, the inequality will hold for any realization of ξ. The
solution for problem (23) has been formulated by [19]:(

a0
)T

x + Ω‖∆x‖ ≤ b RC constraint at the worst realization of ξ (24)

An equivalent deterministic constraint is received, it is a second-order conic constraint;
thus, the problem is no longer linear. However, the problem remains convex and therefore
tractable [19]. To find the RC of the WDS operation under uncertainty, the uncertainty
sets described in (21) are integrated into problems (11)–(17), and the random variables are
maximized as shown in (22)–(24). The result is a deterministic optimization problem with
linear constraints and a second-order objective function. It is noted that the uncertainty
in the constraints is only in the RHS vector, which means only in parameters that are not
multiplied by the decision variables. Hence, the constraints system remains linear. On
the other hand, the uncertainty in the objective coefficients does multiply the decision
variables and results in a deterministic objective function that contains the L-2 norm of our
decision variables.

Z = min
x

T

∑
t=1

P

∑
p=1

C

∑
c=1

C0
t,p,cxt,p,c + Ω‖∆costxt,p,c‖ (25)

Subject to:

−
t

∑
r=1

p
∑

p∈si

C
∑

c=1
xr,p,cQp,c +

p
∑

p∈so

C
∑

c=1
xt,p,cQp,c +

t
∑

r=1
(d0

r,s + Ω‖∆dem‖)δt ≤ v0,s − vs, min

∀t ∈ T, ∀s ∈ S
(26)

t
∑

r=1

p
∑

p∈si

C
∑

c=1
xr,p,cQp,c −

p
∑

p∈so

C
∑

c=1
xt,p,cQp,c +

t
∑

r=1
(−d0

r,s −Ω‖∆dem‖)δt ≤ vs, max − v0,s

∀t ∈ T, ∀s ∈ S
(27)

vs, min ≤ vt,s ≤ vs, max ∀t ∈ T, ∀s ∈ S (28)

−
T

∑
t=1

p

∑
p∈si

C

∑
c=1

xt,p,cQp,c +
T

∑
t=1

(d0
r,s + Ω‖∆dem‖)δt ≤ v0,s − v f inal,s ∀s ∈ S (29)
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0 ≤
C

∑
c=1

xt,p,c ≤ 1 ∀t ∈ T, ∀p ∈ P (30)

2.3. Case Studies

The method was tested against two case studies. The first case study is a small
illustrative network, and the second case study is a real-life network.

2.3.1. Case Study 1: Illustrative Network

The first case study is a small illustrative network as presented in Figure 1. The
network has two water sources, a pump station with two parallel pumps, and a well. The
system has a single tank of 3000 m3 volume, where min and max allowed volumes are
500 and 2800 m3, respectively. A single aggregative consumer represents the demand in
the network.
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Figure 1. Illustrative network layout.

The network is optimized for a 24 h period to find the minimum operational electricity
costs. Electricity tariffs contain two rates: on-peak and off-peak with respective costs of
1.25 and 1 € per kWatt-h. The on-peak tariff occurs during working hours (08:00–17:00)
and the off-peak tariff during the rest of the day. The pump station and well data are
detailed in Tables 1 and 2. By analyzing the specific energy of the different hydraulic
states, we can conclude that operating the pump station (units 1 and 2) is preferred due
to slightly lower energy consumption per pumped volume. However, when considering
the uncertainty of the costs, the variance of the station’s costs is higher than the well’s
costs variance, thus making the pump station more sensitive to dynamic conditions in the
network (uncertainty).

Table 1. Pump station hydraulic operational states.

Flow
(m3/h)

Mean Power
(kWatt)

STD Power
(kWatt)

S. Energy
(kWatt-h/m3) Unit 1 Unit 2

250 100 10 0.4 1 0
250 95 10 0.38 0 1
400 172 10 0.43 1 1

Table 2. Well hydraulic operational states.

Flow
(m3/h)

Mean Power
(kWatt)

STD Power
(kWatt)

S. Energy
(kWatt-h/m3) Well

300 126 5 0.42 1

Two uncertainty sets are constructed according to the types of uncertainty in the
problem. The first is the consumer demand uncertainty. The simulation is for 24 h, for
each hour the mean and standard deviation are calculated according to the demand at the
same hour over different days. The nominal demand values are the mean demands and the
demands covariance is a 24× 24 matrix according to Equations (18) and (19). The mean and
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STD demands are detailed in data file S5. The temporal correlation coefficients are set such
that each time step is correlated with the previous time steps according to Equation (31):

ρt1, t2 = 1− e(t2−t1−1)C (31)

where C is a parameter that determines the decline rate. For the demand uncertainty, the
rate was set to be 0.4. Thus, ρt,t+1 = 1 and the correlation decline at an exponential rate.
The result is that demand is correlated to a few preceding time steps. Next, the operational
cost uncertainty set is constructed. The costs of the pumping station and well are correlated
in time and between them. Here, the decline rate parameter is also assumed to be 0.4.
The pumping elements are correlated between them (spatially correlated). Therefore, the
operational costs covariance matrix is constructed according to Equation (21). The diagonal
block matrices are calculated as the covariance matrix of every single element by its STD
values and the declined temporal correlation as shown in Equations (18) and (19). Then,
the matrices outside the diagonal represent the correlation between every time step and
element to every time step of another element. The matrices for both uncertainty sets are
presented in Figures S1 and S2 in the Supplementary Materials of this paper.

2.3.2. Case Study 2: Sopron Network

The second case study is based on a real regional network of the city of Sopron,
Hungary [33]. The network consists of eight pressure zones (tanks), where five of which
have demands. The network is fed by five wells, each well has a booster pump, where three
of the wells’ pumps are variable speed pumps (VSP). The network also consists of eight
constant-speed pumping stations. Each of the pumping stations' power is supplied from a
different power station. The problem includes additional constraints that were not part of
the illustrative example. Each of the wells has a min and max required volume to pump
within a 24 h operation. The changes in VSP flows are limited such that flows are constant
within the electricity tariff period. Lastly, the available power from the power stations is
limited. To address the additional constraints the mathematical Formulations (25)–(30)
were extended as follows:

Qi(t) = Qi(t + 1) ∀t ∈ TP, ∀i ∈ VSP (32)

vi, min ≤
T

∑
t=1

Qi(t)δt ≤ vi, max ∀i ∈ VSP (33)

K

∑
k=1

Pk(t) ≤ Pps, max ∀k ∈ ps, ∀ps ∈ PS, ∀t (34)

where TP is tariff periods, meaning the flow of every VSP is constant during every period
of the same tariff. Pk(t) is the power consumed by pump station (k) in time (t), where (k)
points to a pump station that is connected to the power station (ps). The full description of
the second case study and its data are detailed in [33]. The network topology is presented
in Figure 2.

As mentioned above, the Sopron network has five consumers, which in this paper
are assumed to have uncertain demands such that all consumers are temporal–spatial
correlated. The mean and STD demands are detailed in data file S6. As a first run,
the temporal correlation decline is assumed to be C = 0.4 For the spatial correlation,
a 0.8 correlation was assumed between every pair of consumers. For operational cost
uncertainty, the example considered uncertainty in two pumping stations, PS4 and PS5.
From a pre-analysis, it was found that these two stations face the largest variance in terms
of suction and discharge heads; hence, their operational points are less expected. The
covariance matrix of the operational costs was constructed according to STD of 10 and 5
for PS4 and PS5, respectively, with a temporal correlation of 0.4 (same as the illustrative
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network). The matrices for both uncertainty sets are presented in Figures S3 and S4 in the
Supplementary Materials of this paper.
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3. Results
3.1. Case Study 1: Illustrative Network Results

The network was analyzed with different values of robustness (Ω). Where Ω repre-
sents the ellipsoid size. In other words, Ω is a quantitative measure for the extremeness
of the scenarios that the solution is immunized against. A complementary stage was held
after solving the optimization problem, which estimates the probability of violating the
constraints. A Monte Carlo simulation of 1000 samples drawn from a multivariate normal
distribution with the same parameters was used for constructing the uncertainty set. The
estimated probability is the joint probability which means that valid samples are only those
that did not violate any of the constraints. The results of the first case study are shown in
Figure 3. The lower subplot shows the operational costs (objective values) as a function of
the robustness, and the upper subplot shows the joint probability to violate one or more of
the constraints.

As expected, the operational costs increase with the increase in robustness, and at the
same time, the probability to violate the constraints decreases. The demand uncertainty
affects the cost indirectly by increasing the total pumped volume or by shifting pumping to
on-peak periods. However, the uncertainty of the operational costs affects the result directly
as it is the costs themselves that are uncertain. In this example, a robustness value larger
than 15 will guarantee the constraint satisfaction in 95% of the scenarios. Nevertheless, such
robustness magnitude might be too high for the cost uncertainty. In such cases, different
robustness values can be considered for different parts of the problem. For example, if the
demand uncertainty is examined with values of [0, 2 . . . , 20] the robustness of the costs
can be [0, 1 . . . , 10]. The method found a solution (Ω = 16) that satisfies all constraints with
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a probability of 96%, and operational costs of 1983.7 €. The deterministic solution value is
1906.7 € which means the robust solution is 4% more expansive.
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Another analysis of the method examined the influence of the level of cost uncertainty.
The level of uncertainty is expressed in the model through the cost standard deviations
(STD). The example consists of two water sources where one of them (pump station) is
slightly more expansive, yet it is also less certain. In this analysis, the prices STD values
of the two sources were changed to examine the effect of the STD on the water sources
combination. Regardless of the STD, the correlation between the two sources remains
unchanged. The results are shown in Figure 4, it can be seen that when both sources have
low STD, the pump station is preferred due to its lower cost. In this case, the station will
supply approximately 80% of the total volume. As the station’s prices’ STD increases and
the well’s STD decreases, the well becomes the main source of the system with 95% supply.
When the station’s prices STD is low, and the well’s prices STD is high, the station is
pumping the entire volume.
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3.2. Case Study 2: Sopron Network Results

As outlined above, the method was used for a set of different robustness values to
analyze the tradeoffs between operational costs and robustness. Figure 5 depicts the results
of the Sopron network. Similar to the previous example, the cost uncertainty is more
dominant but the difference between the two types of uncertainties is less significant. The
method found a robust solution that satisfies the constraints with a probability of 90% and
operational costs of 7078 €. The deterministic solution value is 6688 € which indicates that
the robust solution is 5.8% more expansive. The constraints satisfaction rate is shown in
the upper subplot of Figure 5. The probabilities were calculated based on 1000 Monte
Carlo samples drawn from a normal multivariate distribution with nominal demands
as presented by [33] as the mean values and the same covariance matrix used for the
uncertainty set.
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One contribution of the current paper is the modeling of spatial–temporal correlation
as part of the robust optimization formulation. Here, the properties of the correlations are
analyzed to examine the solution’s consequence from various types of correlations. For the
temporal correlation, the analysis considered three scenarios of no temporal correlation,
moderate decline correlation with C = 0.25, and fast decline correlation with C = 0.5. These
scenarios were integrated with four spatial correlation scenarios of zero correlation (ZC)
which means all coefficients are zero, negative correlation (NC) where all coefficients are
−0.8, positive correlation (PC) where all coefficients are 0.8, and finally, zones correlation
(ZONES) where arbitrarily the consumers were divided into two zones by left and right
sides of the network as it presented in Figure 2. On the left side of the network are
consumers D4, D5, and D6. These consumers were assumed to be correlated between them
with a coefficient of 0.9. On the right side of the network, consumers D7, and D8 were
assumed to be correlated between them with coefficients of 0.8. All the other coefficients
between the two zones are zero. The zone correlation illustrates a situation where the
network supplies two different zones which behave differently from each other. The results
obtained from the correlation analysis are shown in Figure 6, where it can be seen that the
operational costs are not dramatically affected by either temporal or spatial correlations.
The scenario of no temporal correlation is the least expensive, but the differences are quite
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small. In the case of negative correlation, there is a gap of 1.6% between no temporal
correlation (7757 €) and fast decline temporal correlation (7887 €). On the other hand, the
temporal correlation impacts the constraints violations rate more dramatically. It can be
seen that with no temporal correlation, the probability to violate the constraints is much
higher than when a temporal correlation exists. The most prominent case is the combination
of no correlation at all (no temporal correlation and zero spatial correlation) presented in
the most left bar in Figure 6. In this case, the solution will violate at least one constraint
with a probability of 99%.

Water 2023, 15, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 6. Sopron network correlation analysis. 

4. Conclusions 
The optimal operation of WDS is a mature research area, yet the subject of operation 

under uncertainty is still unevolved. Robust optimization (RO) is one approach for opti-
mization under uncertainty, and it holds several advantages such as the guaranteed fea-
sibility for any scenario within a predefined uncertainty set. It does not require probability 
density functions of the unknown parameters, and it results in tractable formulations that 
can be solved in short run times even for large problems. Based on RO theory, an optimi-
zation model was developed to solve WDS optimal operation problems with uncertainty 
in both consumer demands (RHS) and operational costs (objective coefficients). The un-
certainty sets of the model were constructed to include plausible scenarios while extreme 
scenarios were left out. The justification for such an approach is the reduction in the solu-
tion conservatism. On the other hand, in very extreme scenarios, the system will not be 
able to satisfy the water demands. The contraction of the uncertainty sets was performed 
by addressing the correlations between different uncertain parameters. The model math-
ematical formulation implemented Ellipsoid uncertainty sets, which captured temporal 
and spatial correlations of the uncertain parameters. 

Two case studies were examined in this paper and illustrated how the different types 
of uncertainties impact the operation policy, thus emphasizing the importance of consid-
ering uncertainties in WDS operation. The method supports systems operators by pre-
senting the tradeoff between cost and reliability. For example, the suggested approach 
found solutions that increase the probability to satisfy all constraints (above 90%) with a 
penalty in energy costs of 4–6%. It was shown that the uncertainty level of pumping costs 
can reshape the combination of water sources. While in deterministic approaches the less 
expansive sources are exhausted first; here, importance is also given to the level of cer-
tainty of the source. This insight might have possible implications for water availability, 
water quality, etc. Finally, the importance of correlation analysis was presented by exam-
ination of different temporal and spatial correlation scenarios. A deterministic approach 
cannot handle such correlations as it considers only known values. In theory, a classic 
stochastic approach can model uncertainty, yet in real problems, the dimensionality and 
non-convexity of the stochastic problems are intractable; here, the RO theory suggests a 
valuable strategy that can find a feasible solution, while considering correlated uncertain-
ties such that the solutions are not too conservative. Future research opportunities are 

Figure 6. Sopron network correlation analysis.

4. Conclusions

The optimal operation of WDS is a mature research area, yet the subject of opera-
tion under uncertainty is still unevolved. Robust optimization (RO) is one approach for
optimization under uncertainty, and it holds several advantages such as the guaranteed
feasibility for any scenario within a predefined uncertainty set. It does not require probabil-
ity density functions of the unknown parameters, and it results in tractable formulations
that can be solved in short run times even for large problems. Based on RO theory, an
optimization model was developed to solve WDS optimal operation problems with un-
certainty in both consumer demands (RHS) and operational costs (objective coefficients).
The uncertainty sets of the model were constructed to include plausible scenarios while
extreme scenarios were left out. The justification for such an approach is the reduction
in the solution conservatism. On the other hand, in very extreme scenarios, the system
will not be able to satisfy the water demands. The contraction of the uncertainty sets was
performed by addressing the correlations between different uncertain parameters. The
model mathematical formulation implemented Ellipsoid uncertainty sets, which captured
temporal and spatial correlations of the uncertain parameters.

Two case studies were examined in this paper and illustrated how the different types of
uncertainties impact the operation policy, thus emphasizing the importance of considering
uncertainties in WDS operation. The method supports systems operators by presenting the
tradeoff between cost and reliability. For example, the suggested approach found solutions
that increase the probability to satisfy all constraints (above 90%) with a penalty in energy
costs of 4–6%. It was shown that the uncertainty level of pumping costs can reshape the
combination of water sources. While in deterministic approaches the less expansive sources
are exhausted first; here, importance is also given to the level of certainty of the source. This
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insight might have possible implications for water availability, water quality, etc. Finally,
the importance of correlation analysis was presented by examination of different temporal
and spatial correlation scenarios. A deterministic approach cannot handle such correlations
as it considers only known values. In theory, a classic stochastic approach can model
uncertainty, yet in real problems, the dimensionality and non-convexity of the stochastic
problems are intractable; here, the RO theory suggests a valuable strategy that can find
a feasible solution, while considering correlated uncertainties such that the solutions are
not too conservative. Future research opportunities are extending this work to dynamic
folding horizon optimization with adjustable robust optimization and comparing the RO
performance to other optimization under uncertainty techniques.
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mdpi.com/article/10.3390/w15050963/s1, Figure S1: Illustrative network consumer demand covari-
ance matrix; Figure S2: Illustrative network operational costs covariance matrix; Figure S3: Sopron
network demand covariance matrix; Figure S4: Sopron network operational costs covariance matrix;
Data file S5: demands data for illustrative network; Data file S6: demands data for Sopron network.
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