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Abstract: This study investigates the simulation of celerity attenuation and head damping in transient
flows using a Lagrangian approach rather than an Eulerian approach. Typically, the Lagrangian
approach requires orders of magnitude fewer calculations, resulting in the rapid solution of very
large systems. Additionally, it is based on a simple physical model. As the method is continuous in
both time and space, it is less sensitive to the structure of the network and the length of the simulation
process. Most recent studies, however, have focused on the development and improvement of
computational routines for modeling in an Eulerian environment. This results in the development
of adequate models that are suitable for Eulerian models but not applicable in Lagrangian-based
models. As a result of this fixation, a bias was created towards using Eulerian approaches in transient
simulations. It also diverts resources from further development of Lagrangian models. Consequently,
it is necessary to develop a friction model that is more accurate and compatible with Lagrangian
methods without compromising their performance. To the authors’ knowledge, such a model is yet to
be published in the literature. This study presents a new friction modeling technique that compensates
for both the local and convective acceleration terms for the Lagrangian transient modeling approach
without compromising the computational time.

Keywords: transient; WCM; water hammer; unsteady friction

1. Introduction

Water hammer models are becoming more present in designing and analyzing complex
pipeline systems. In addition, they are more frequently used for the identification of system
leakage, closed or partially closed valves, and the assessment of water quality problems.
Traditionally, steady or quasi-steady friction terms are incorporated into standard water
hammer algorithms. This assumption holds for slow transients in which the wall shear
stress behaves similarly to a quasi-steady force. Previous experimental validations of
steady friction models for rapid transients revealed significant differences in attenuation
and phase shift of pressure traces when the computed results are compared with the
measured results. Turbulence models have been developed and used to perform numerical
experiments in turbulent water hammer flows for a multitude of research purposes, such
as the computation of instantaneous velocity profiles and shear stress fields, the calibration
and verification of water hammer models, the evaluation of the parameters of unsteady
friction models, and the comparison of various unsteady friction models.

Understanding the governing equations that are in use in water hammer research
and practice and their limitations is essential for interpreting the results of the numerical
models that are based on these equations, judging the reliability of the data obtained from
these models, and minimizing misuse of water hammer models. While the most common
approaches used to describe transient events in the literature are inherently Eulerian, they
require a dense mesh to mimic real-life transient events and guarantee accurate results.
Subsequently, significantly increasing the computational capacity, time and resources
required. Consequently, deeming these models impractical to use in advanced optimizing
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algorithms. For instance, stochastic algorithms (e.g., genetic algorithms) are inconvenient
to work with when dealing with time extensive simulation, since their efficiency relies on
the parallel speed of the simulation.

While advanced sophisticated methods attempt to mathematically describe and model
the shear stresses and velocity profiles to better mimic transient events in a lab, it can
lead to misuse and inaccurate estimation in real-life settings. Therefore, the suggested
method attempts to capture the transient behavior by introducing a calibrated factor that
can accommodate the unknown uncounted-for parameters that exist in real-life networks.

This work presents a framework for simulating the head-damping effect in transient
flows when modeled in the Lagrangian approach. The Lagrangian approach normally
requires orders of magnitude fewer calculations, which allows very large systems to be
solved in an expeditious manner, and it has the additional advantage of using a simple
physical model as the basis for its development. Moreover, since it is continuous in both
time and space, the method is less sensitive to the structure of the network and the length
of the simulation process, resulting in improved computational efficiency. The proposed
model relies on the wave characteristics method (WCM) introduced by Wood [1] and
describes a declining wave celerity along with an unsteady friction factor. The celerity is
modeled in such that it decreases while the waves propagate through the pipelines due to
energy dissipation.

1.1. Models

Unsteady turbulent flows in pipes are described by a system of hyperbolic-parabolic
partial differential equations that cannot be solved analytically in most cases. Therefore,
numerical solutions are employed to approximate them. The development of theories and
models to better characterize and manage hydraulic transients in pipeline systems has
been the subject of extensive research. Previous studies have employed one-dimensional
models to analyze the efficiency of systems’ transient responses [2–7]. Although it can-
not accurately depict the system’s transient responses without additional calibrations
and tunings, one-dimensional methods are still the most popular method in software
used for practical simulations. More recent studies have suggested and explored more
complex two-dimensional and quasi-two-dimensional models that can contain various
factors [4,8]. Numerous methods applied transient analysis to detect various anomalies
along the distribution system. For instance, Meniconi et al. [9] and Chen et al. [10] de-
veloped creative techniques for partial blockage detection in pipeline systems. Other
researchers focused on detecting water leakages and assessing pipe conditions using tran-
sient analysis. [11–19]. Furthermore, it is possible to assess the network layout including
pipes, side branch, and dead ends, as demonstrated in the works of Duan and Lee [20],
Kim [21], and Meniconi et al. [22].

The understanding of transient flows and transient system responses is crucial to the prac-
tical use of transients and the minimization of damage to the physical infrastructure [2,3,23].
Creaco et al. [24] discussed two demand-modeling methods for investigating extended period
simulations coupled with unsteady flow models. Contrary to this study, the unsteady flow
modeling method used was an Eulerian approach based on the method of characteristics
(MOC) [25], which was further tested on a laboratory scale. A finite difference method is
explained in [26]. Marsili et al. [27] proposed a stochastic approach to modeling and analyz-
ing water distribution system transients. Based on the method of characteristics, including
unsteady friction, their analysis was verified through laboratory tests.

1.2. Friction Models

Numerous approaches have been developed to numerically model pressure waves
in water distribution systems. These approaches may be categorized as either Eulerian
or Lagrangian in nature. The Eulerian approach reformulates transient flow equations
into total differential equations, which are then expressed as finite differences. Lagrangian
theory, on the other hand, tracks pressure changes as they travel through a pipe network
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and updates the state only when a change occurs. There are many well-known numerical
challenges in solving the transient flow equations, including avoiding numerical disper-
sion and attenuation, and eliminating unnecessary distortion of the physical system or
its boundaries.

The development and incorporation of quasi-steady and unsteady friction models
into pipeline unsteady flow models has been the subject of many studies. In their 2005
paper, Ghidaoui et al. [23] observed that steady or quasi-steady friction models are unable
to account for the damping of transient pressure found in experimental observations. By
contrast, pressure damping is better accounted for by using unsteady friction and turbu-
lence models [28–40], which are then validated through experimental measurement under
a wide range of flow Reynolds numbers, from laminar to highly turbulent regimes [41–50].
Martins et al. [51,52] used the CFD approach to simulate and model transient pressure
distributions and wall shear stress in pipeline systems. While Ramos et al. [53] developed a
dimensionless form of pressurized transient flow equations to depict surge damping in a
single pipe line system. In the work of Wahba [54], a Runge–Kutta scheme was developed
to simulate unsteady flow in elastic pipes due to sudden valve closure.

2. Materials and Methods

In the following description of the model formulation, the WDS mapping is explained
as well as the proposed Lagrangian transient modeling, followed by a comparison with the
TSNET package developed by Xing and Sela [55]. Throughout the following sections, the
wave characteristic method with quasi-steady friction is referred to as Q-WCM [56]. The
refined wave characteristic method with unsteady friction is referred to as U-WCM, and
the TSNET method of characteristic with unsteady friction is referred to as U-MOC [55].

2.1. Mapping the Water Distribution System

An EPANET (.inp) file was imported to prepare the network for transient simulation.
A water distribution system was represented as an undirected graph G = (V, E), whose
vertices are the consumers, sources, and valves, whereas the edges are the pipes connecting
them. In general, different types of vertices are defined as discontinuities with different
coefficients of resistance. MATLAB codes and the TSNET Package in Python were used to
perform transient calculations and simulations.

2.2. The Wave Characteristic Method Model

In 1965, Wood [1] introduced the wave characteristic method (WCM), which is based
on the notion that transient pipe flow is caused by pressure waves propagating through the
system as a result of disturbances being introduced. Pressure waves are described as rapid
changes in pressure that propagate at the speed of sound in a liquid pipe medium. Pressure
waves propagate in pressurized water pipes at a speed of approximately 1000 m/s in metal-
lic pipes and about 400 m/s in polymeric pipes [57,58]. In the presence of discontinuities,
these waves are partially reflected and transmitted through the pipe system.

2.3. Pressure Magnitude

Calculating the magnitude of a pressure wave is conducted by using the Joukowsky
equation (Equation (1)) under the assumption of an immediate change in the valve opening.
In addition to describing the correlation between pressure change ∆P and flow change ∆Q,
the Joukowsky equation also lays the foundation for the WCM mathematical model. In
order to work with head-pressure units, the ∆P is replaced by the term ρg∆H, as shown
in Equation (1).

∆P = ρc
∆Q
A

∆P=ρg∆H−−−−−−→ ∆H = Cel
∆Q
gA

(1)

where ∆P represents the pressure, ∆H is the change in head pressure, ∆Q is the change in
flow rate, Cel is the pressure wave’s celerity; A represents the flow section area, ρ is the
fluid density, and g is the gravitational acceleration constant.
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2.4. Unsteady Friction Attenuation

This section elaborates on the modification that has been proposed to the WCM in
order to better capture the transient behavior of WDSs. It builds on the previous work
of Zeidan and Ostfeld [56], which introduced a quasi-steady friction model to the WCM.
Furthermore, previous studies have examined the effect of friction (viscous resistance) on
the propagation of pressure waves by using the orifice analogy (e.g., [59]). In this case, the
pipe was divided into (n + 1) pipes that were similar in length by adding (n) imaginary
friction orifices. A friction orifice was modeled as a square-law orifice with an appropriate
orifice coefficient. This took the form of a quadratic correlation between the pressure head
∆H and the flow rate Q, as follows:

∆H = A(t) + B(t)|Q|+ C(t)Q|Q|. (2)

The terms A, B, and C represent the coefficients for a general representation of the
characteristic equation. The coefficient may be time-dependent but known at every time
step. The absolute values of Q were employed to make the resistance term dependent on
the flow direction.

Due to its simplicity and ability to produce reasonable agreements with experimental
pressure head traces, the Brunone et al. [60] model has become the most widely used
modification in water hammer applications. However, it does not fit the Lagrangian
approach for transient modeling. It is simply not possible to utilize Brunone’s model using
the Lagrangian approach as it lacks the dense mesh necessary. Consequently, in addition to
the Darcy–Weisbach equation, the Daily [28] empirical correction to the wall shear stress
model was adopted here to compute the head-loss and shear stresses along the pipelines.
Equation (3) is, therefore, proposed as a hybrid model that combines the Daily model with
the instantaneous acceleration-based model (IAB). The wall shear stress is expressed as:

τwall =
ρ f V2

8
+

kuρD
4

∂V
∂t

(3)

where τwall is the combined steady and unsteady wall shear stresses, f is the Darcy–
Weisbach coefficient, V is the flow velocity, D is the pipe diameter, ∂V/∂t is the local
instantaneous acceleration, and ku is Brunone’s friction coefficient.

The result of including the unsteady shear stress model (Equation (3)) into the square-
law orifice analogy (Equation (2)) is described by the following equation:

∆H =

[
ku

2gA
∂Q
∂t

]
︸ ︷︷ ︸

A(t)

+

[
− f L

2gDA2

]
︸ ︷︷ ︸

C(t)

Q|Q|. (4)

The value of Brunone’s friction coefficient ku is calculated using Vardy’s sheer decay
coefficient or calibrated in a lab setting. However, the ku values available in the literature are
mostly applicable to Eulerian models and are not necessarily compatible with Lagrangian
methods. As a means of capturing the head-damping phenomenon observed on laboratory
testbeds, a ku linear damping is introduced as follows:

Ku = 0.16 +
t
β

(5)

where β is a calibrated coefficient and t represents the lifespan of the wave. It is worth
noting that the value 0.16 is merely an arbitrary number that was calibrated in the first case
study and is by no means restrictive.
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When examining the modified instantaneous acceleration-based model (MIAB) which
was independently formulated by Pezzinga [47] and Bergant et al. [48], we can find that
the terms for the wave’s celerity is modified to be:

Cel′ =
Cel√

1 + Ku
(6)

where Cel′ is the modified celerity, Cel is the wave celerity, and Ku is Brunone’s coefficient,
and the MIAB model is elaborately explained in the work of Vítkovský et al. [61]. In light of
the MIAB celerity modification, a simple linear damping factor is proposed for the wave’s
celerity in the Lagrangian model, as described below:

Cel′ = Cel − α·t (7)

where t represents the duration of the transient wave and α is a calibrated coefficient.

3. Results
3.1. Case Study 01—Proof of Concept

The first network was similar to a simple pipeline system with a valve located down-
stream. It consisted of a water source at an elevation of 750 m, two steel pipes 500 mm in
diameter, and a 50 LPS downhill consumer. The length of pipes (P1) and (P2) were 1.2 km
and 2.4 km, respectively. The system’s layout matched the one described in Figure 1.
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Figure 1. The layout of the first case study describes a simple pipeline system with a junction and a
valve downstream.

As part of the first case study, the Q-WCM model was compared to the U-MOC
model. The main objective of this study was to identify the major differences between the
two models as well as the influence of the suggested modification.

Figure 2 shows the pressure fluctuations at node 2 for both models. As is apparent
from the graphs, the transient response of the two models differs significantly, with the
Q-WCM exhibiting more frequent oscillations and a larger amplitude than its counterpart.
Several factors account for this behavior, such as the velocity attenuation and the energy
dissipation caused by friction. As time progresses, the velocity of the U-MOC declined,
causing the pressure waves to arrive later, while the unsteady friction was responsible for
greater head damping.

To evaluate the effectiveness of U-WCM, this case study calibrated and implemented
the new suggested parameters (α, β). On the basis of the calibrated parameters, various
variations of case study 01 were tested to examine the influence of different network
parameters on the transient behavior of the network. It is desirable to obtain constant
parameters that will fit into other layouts and will be considered constant coefficients in
the future.

After introducing both the celerity and friction tunings to the Lagrangian model, it
was beneficial to observe the influence of each parameter on the transient response. In this
case study, the parameters α and β were calibrated to be 0.5 and 150, respectively. Figure 3
presents the pressure oscillation at node 2 for different tunings. The transient response
shown in Figure 3a served as a baseline for these modifications since it was free of any
celerity or friction adjustments. Figure 3a illustrates that the WCM pulses arrived much
faster (with an increasing gape) than their counterparts in the unsteady model, largely due
to differences in pressure wave celerity. By adjusting the wave velocity to 960 m/s and the
Ku to 0.16, the phase difference was greatly reduced (Figure 3b); however, the amplitudes
were still off. Based on Figure 3c, it can be observed that by introducing the linear damping
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effect for the friction factor, both models provided similar transient responses. Finally,
Figure 3d illustrates the impact of adjusting both the celerity and friction factor, where the
transient response of U-WCM is remarkably similar to that of U-MOC.
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3.2. Sensitivity Analysis

In pursuance of avoiding overfitting and specific sole solutions, the parameters were
tested in modified variations of case study 01, where the pipe lengths were altered, but
the parameters had not been re-calibrated. The purpose of this study was to examine the
transient response for a similar layout with different hydraulics, and assess how the pipe
lengths affect the transient response.

Variation A: In the first case study layout, the lengths of the pipes were altered in
order to test the calibrated parameters, where the transient response at node number 2
was observed and compared to the U-MOC. The pipe lengths P1 and P2 were changed to
1.5 km and 2.0 km, respectively. Figure 4 illustrates the transient response of the U-WCM
and the U-MOC at node number 2.
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U-MOC (red) for the first case study—A variation. The quasi-model (Q-WCM) is illustrated in gray
in the background.

As shown in Figure 4, the transient responses for the two models were fairly similar,
with relatively few anomalies. It was found that the retrieved pressure signal from the
U-WCM was slightly shifted, and the amplitudes were slightly off by less than one meter
in head pressure. However, the differences are negligible from an engineering standpoint,
particularly when dealing with such phenomena in an area where background noises and
disturbances are prevalent.

Variation B: The parameters were further tested using a similar layout but with
different pipe lengths, where P1 and P2 were each 3.0 km long in this instance. Figure 5
displays the transient responses of the three models at node number 2.

Based on Figure 5, the U-WCM can depict a similar transient response to that of the
U-MOC; however, it is important to keep in mind that the WCM requires fewer compu-
tational resources, thus, requiring less computation time. The U-WCM outperformed the
Q-WCM significantly without increasing computational time.

It appears that the U-MOC model performed abnormally around the 75 s mark and
forward, and the pressure signal experienced some instability. In this case, it is speculated
that the aberrations result from mesh and boundary condition sensitivity. Nonetheless, the
U-WCM did not encounter such deviations due to its inherent ‘naive’ Lagrangian approach.
A good practice is to carefully modify the mesh and boundary conditions in order to avoid
such anomalies. Furthermore, it is important to observe that numerical instabilities are
present in Lagrangian methods as well, if they are defined incorrectly.
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3.3. Case Study 02—Looped Water System

The second network resembles a more complex pipeline system featuring four loops
and a valve at the downstream. There was one source of water at an altitude of 191 m, nine
steel pipes of varying properties, and a 100 LPS downhill consumer. Table 1 lists the length
and diameter of the pipes. The layout of the system is shown in Figure 6.

Table 1. The pipes case study 02.

Link ID Length [m] Diameter [mm]

Pipe P1 610 900
Pipe P2 914 750
Pipe P3 610 600
Pipe P4 457 450
Pipe P5 549 450
Pipe P6 671 750
Pipe P7 1000 900
Pipe P8 457 600
Pipe P9 488 450
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Similar to the first case study, the introduced parameters (α, β) were calibrated to
produce a U-WCM transient response that was similar to the U-MOC. Calibration was
carried out in a systematic manner and resulted in values of (α = 0.2, β = 100). In the
second case study, these values were tested at different nodes to determine whether they
are accurate for a particular node or whether they are appropriate for the entire network.

Figure 7 illustrates the pressure oscillation at node 6 in the second case study. The
responses of the different models Q-WCM, U-WCM, and U-MOC are shown in gray, black,
and red, respectively. Note that the values of α and β in this case study differ from those in
the first case study. In addition, the U-WCM shares striking similarities with the U-MOC
transient response, while the unmodified Q-WCM model lags behind in terms of both
amplitude and celerity. The unmodified Q-WCM model depicts a more powerful and faster
pressure wave that dissipates significantly slower than its counterpart. In the U-WCM
model, for instance, the pressure oscillation decreases around the 60-s tick mark, whereas
the Q-WCM model predicts pressure fluctuations of 10 m.
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In this instance, the same parameter values (α = 0.2, β = 100) were tested for a different
node (node 2). It is important to emphasize that these parameters were calibrated specifi-
cally for node 6. Figure 8 illustrates the transient response for the three models examined,
using colors consistent with the previous graphs. In general, the U-WCM performed
well until the 47 s mark, where it experienced slightly higher pressures than the U-MOC.
Nevertheless, its advantages are again evident over the unmodified Q-WCM model.

Using the same parameters (α = 0.2, β = 100), a third node (node 3) is tested. It was
located much further from the source of the transient wave and close to the water source,
which acted as a reflecting boundary condition. It is interesting to examine the behavior
of the pressure fluctuations in the vicinity of the water source. Figure 9 illustrates the
transient response for the three models examined in colors consistent with those of the
previous graph. The U-WCM performance is much better than that of the last example, and
it correlates well with the U-MOC and has a clear advantage over the Q-WCM. Therefore, it
is safe to assume that the suggested U-WCM model holds a higher potential in representing
the transient behavior than the quasi model.
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4. Conclusions

In previous studies, numerous models have been developed for simulating transient
responses which capture the damping effect experienced in more realistic laboratory set-
tings. However, the majority of these models included a modification based on an Eulerian
approach. More specifically, nearly all studies proposed different variations and modifica-
tions of the method of characteristics (MOC). However, these approaches require a dense
mesh to accurately represent transient behavior, which increases computational capacity
requirements, as well as contributes to numerical instability.

In this study, we extend the Wave Characteristic Method (WCM) developed in the mid-
sixties, which is a less computationally intensive method and does not require meshing to
perform transient analyses. The WCM generally produces less accurate transient behavior
than that observed in the lab. Additionally, while some studies introduced a friction orifice
analogy to enhance the accuracy and capture the head-damping effect, the head damping
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is inaccurate, and the pressure waves travel at greater celerity. For that matter, celerity
attenuation is not acknowledged in any way.

In this study, we introduce a linear wave celerity attenuation and a time linear operator
to the friction factor. A set of new suggested parameters (α, β) was introduced to the model
and was calibrated in both case studies, which results in promising results. Moreover, the
calibrated parameters were tested using different variations of the same network layout
in order to determine their sensitivity for pipe lengths. In line with the hypothesis, the
introduced celerity and friction linear modification resulted in a better transient response
than the quasi-steady model. The modified model produced pressure attenuation that
was similar to that obtained from the more complex unsteady model provided by the
TSNET Python package. It is worth noting that the running time of the refined WCM was
significantly lower than the unsteady MOC-based model. However, the suggested model
requires initial calibration either with lab tests or plots of the calibrated unsteady friction
Eulerian model. In the scope of this study, we aim to show the simplicity and potential of
recruiting Lagrangian models in transient modeling. Additionally, we encourage research
and models that suit Lagrangian models and divert from the more accepted Eulerian
models. The authors believe that there is a place for both approaches in modeling and
addressing transient problems, each with its advantages and disadvantages. In general,
Eulerian approaches tend to be more accurate, but require greater computational power.
In this regard, they are deemed inadequate for stochastic optimizations, for example. A
Lagrangian model can make up for this shortcoming, and the results can then be verified
by an Eulerian model as a precautionary measure, if necessary. In drawing to a close, it
is possible to produce a more reliable algorithm by integrating both models in a more
compatible manner.
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