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Abstract: The practice of rainwater harvesting (RWH) has been studied extensively in recent years, as
it has the potential to alleviate some of the increasing stress on urban water distribution systems and
drainage networks. Within the field, an approach of real-time control of rainwater storage is emerging
as a method to improve the ability of RWH systems to reduce runoff and urban drainage flows.
As applying real-time control on RWH tanks means releasing water that could be used for supply,
applying controlled-release policies often hinders the RWH system’s ability to supply water. The
suggested study presents an approach that has the potential to improve the capability of a distributed
network of RWH systems to mitigate peak drainage flows while substantially reducing the impact on
harvested rainwater availability. The suggested method uses a genetic algorithm to generate release
policies, which are tailored for any given rain event and initial conditions. The algorithm utilizes the
modeled drainage system’s response to a given rainfall pattern and manages to substantially reduce
peak drainage flows with little impact on available rainwater when compared to the conventional
no-release alternative and other active release methods.

Keywords: rainwater harvesting; real-time control; stormwater retention; urban drainage system

1. Introduction

The field of rainwater harvesting (RWH) has received more attention in recent years
due to its positive effects on urban water infrastructures—water distribution systems and
drainage networks [1]. These systems are experiencing increasing stress in many urban
areas due to population growth and climate change [2–4]. The positive effect of RWH
on the potable water system is apparent—RWH systems collect water in relatively good
quality [1,5,6], which can diversify local water sources. As rainwater is used onsite to
support demands within the building it was collected from, RWH is a useful practice to
mitigate the depletion of conventional water resources [7] and their possible contamination
with pollutants carried by urban runoff [8]. The positive impact of RWH on urban drainage
systems is inherent—less rainwater reaches the street level as it is collected and used, thus
drainage systems in areas with widespread RWH implementation will endure reduced
runoff volumes and peak flows [9–11].

The reduction in drainage peak flows attained by implementing RWH systems dimin-
ishes in long and intense rain events—rainwater tanks are filled at the early stages of the
storm and remain full throughout it as demands from the tanks are usually lower than
rainwater inflows. A full tank loses its drainage flow reduction ability as any inflow causes
immediate overflow [11,12]. To address this issue, the latest research is focused on studying
the effects of controlled releases from rainwater tanks.

The basic principle of applying controlled releases on RWH systems is the opening
of a valve at the bottom of the rainwater tank and releasing water to the drainage system,
thus freeing up storage in the tank allowing collection of additional rainwater with the
intention of reducing peak drainage flows. Obviously, the released rainwater cannot be
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supplied and is practically “wasted”. Furthermore, the action of allowing water to flow
out from the tank has an impact on the drainage system’s flow pattern, which should be
considered when generating controlled release policies. A basic approach to controlled
releases is the passive release method [13]—the rainwater storage volume is divided into
retention and detention storages. The retention volume collects the initial rainwater volume
from a certain rain event, and when it fills up, the detention volume comes into play by
collecting the excess rainwater and releasing it through a valve, which remains constantly
open, thus acting as a micro detention basin [14]. A more elaborate approach uses real-time
control (RTC) methods that consider the current state of the RWH system and available rain
forecasts and trigger controlled discharges from the rainwater tank when certain conditions
are met (e.g., predicted overflow). This approach, referred to as active release in several
publications, achieves better results in reducing peak flows than passive release while
succeeding in supplying rainwater more efficiently [13,15,16]. Most recent studies continue
to develop the active release approach and formulate new methods of generating controlled
release policies. These methods use state-of-the-art simulation-optimization techniques
that aim to tailor different release policies for different rain events [17,18].

As widespread implementation of RWH systems in the urban environment is adding
considerable (although decentralized) stormwater detention and retention volume to the
local drainage system, many similarities could be drawn between the emerging field
of controlling RWH systems and the established field of controlling different facilities
of the modern drainage system—detention basins, stormwater harvesting systems, and
controlled weirs and valves [19–21]. Both fields aim to mitigate urban drainage flows and
are investigating the use of RTC principles. However, they usually differ in their auxiliary
objectives—while RWH is set to supply water for onsite domestic use, stormwater control
is an important tool to prevent failures in downstream treatment facilities or pollution of
receiving water bodies [22]. The two also differ in the scale and location of implementation—
stormwater control measurements are located in key locations and nodes throughout the
drainage system, while RWH systems are mitigating flows by collecting rainwater and
controlling its storage at the source: single buildings or residential clusters.

Another important difference is the relative maturity of the research regarding ur-
ban drainage RTC optimization. Current studies take advantage of modern simulation-
optimization methods and rain forecasts to generate customized, event-dependent control
policies, which could be applied to existing infrastructure [22–24]. In comparison, only a
few papers about optimizing the control of RWH systems regarding its effects on an urban
catchment (rather than a single RWH system) appear in the literature.

Although not common, the RTC of a system with multiple RWH systems has been
studied by several research groups. In a review about the use of RTC in stormwater
control, Xu et al. [21] stated RWH as one of the practices that could benefit from centralized
control. More technical works include Oberascher et al. [25], who examined the effects
of conceptually implementing small-storage RWH systems and applying RTC strategies
in a small community regarding combined sewer overflow volumes and drinking water
savings. Although very detailed models of the town’s water and drainage systems were
set up, the results include volumetric overflow reduction and not peak-flow reduction,
and the examined RTC policies were pre-determined and not generated as a result of an
optimization process. In a later article [26], this group evaluated several RTC strategies,
which consider the current state of the drainage system when deciding when and how much
water to release from the RWH systems, and incorporated the examination of momentary
flows of the drainage system rather than total overflow volumes. Di Matteo et al. [17] and
Liang et al. [18] presented an optimization method aimed at generating tailored control
policies, which minimize peak flows from a system of two controlled RWH tanks. The
optimization process was based on a genetic algorithm (See Section 2) and was tested
on a significant number of design storms. As the objective function of the optimization
included only the reduction in peak flows, it did not account for the water supply aspect
of RWH. These articles did not include a drainage system model and the flow they aimed
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to reduce was the superposition of the outflow from each tank. Therefore, they did not
address the attenuation effects drainage systems are characterized by, which might affect
the resulting release policy. Although dealing with stormwater storage and not RWH
systems, Liang et al. [27] presented a two-step optimization method for deciding both the
design and operation of controlled stormwater basins, which could be adopted for RWH
as well. As in [17,18], the objective function was set to minimize flow at the outfall of the
modeled catchment and did not include the supply aspect of the collected water.

The current study is a proof-of-concept of a new approach of optimization aimed to
address some of the gaps in the field of RTC of a RWH system network. This approach
simulates the response of the modeled drainage system to a given rain event and uses
the results of this benchmark run to derive the needed parameters for the optimization
process, which generates a favorable release policy. The main benefits of the suggested
method are (a) the ability to handle any rain event without changes in the basic code
and (b) addressing both uses of RWH (water supply and peak flow mitigation) using a
single objective function without the necessity to apply weights on these often-competing
purposes. This new method was tested on a simple drainage model comprised of three
collection areas and their RWH systems with both synthetic and real rain events of different
durations, patterns, and intensities. The new approach was compared to both conventional
RWH and to the active release approach on the metrics of mitigating peak flows and water
availability and outperformed both with a significant reduction in drainage flows while
inflicting minimal impact on the availability of rainwater.

2. Methods
2.1. Basic Concept

Consider a simple drainage network connected to three buildings with installed RWH
systems. For simplicity, it is assumed that RWH systems collect all the rain falling on the
roofs of these buildings, so inflows to the drainage network consist only of overflows or
releases from the systems’ rainwater storage tanks (which also supply water to the building
they are installed in).

The essence of the optimization process is demonstrated in Figure 1 with a simple rain
event and its resulting hydrograph when no controlled releases were initiated (Q(t)). Given
that the rainwater tanks were not empty at t = 0 and rain commenced at some point in
time t1, the following hydrograph Q(t) was recorded at the outfall of the drainage system
(Figure 1a). The total volume of overflows, or the total volume of wasted water V that
cannot be used for supply can be calculated by

V =
∫ t=T

t=0
Q(t)dt (1)

where T is the time when the flow at the outlet drops to 0.
The basic assumption of the presented optimization strategy is that for a given set of

initial conditions and rainfall pattern, this volume V cannot be reduced when introducing
controlled release. In other words, this volume V of water (or greater) will be conveyed
through the drainage system in any controlled release policy. If V is assumed to be the
smallest volume of rainwater to be conveyed through the drainage system for a given
event, then in order to achieve the maximum reduction in peak flow of the simulated rain
event, the flow at the outfall should be constant (denoted as Qobjective) and equal to

Qobjective =
V

trelease
(2)

where trelease is the duration from t = 0 until controlled releases are stopped. This trelease was
set to the time of the last recorded overflow of the simulation with no controlled releases
(see “Simulation-Optimization Process”) used to find V (Figure 1b). Because trelease is the
last timestep with recorded overflow, it is selected as the timestep in which the controlled
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releases will stop as any release past the point in time of trelease is unnecessary (and any
rain past this time will refill the tanks).

Naturally, Qobjective is synthetic and cannot be achieved from t = 0 to trelease (e.g., flow
at the outfall cannot drop from Qobjective to 0 immediately), but the goal of the optimization
process is to find a controlled release policy that will produce an outfall hydrograph as close
as possible to Qobjective for every timestep of the simulation, since for every time period in
which the flow at the outfall is smaller than Qobjective, there will be a resulting time period
where the flow is greater than Qobjective.

Because the basic assumption is that V (the total volume of water conveyed through
the system, which is the amount of wasted water) cannot be reduced, the optimization
process also deals with the second objective of RWH—retain as much water as possible
for supply.
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Figure 1. Graphic demonstration of the proposed optimization process: (a) Outfall flow rate Q(t)
with no controlled release and the total volume of water that flows through the system (V). (b) The
objective of the optimization process is to convey the same volume V with a constant flow rate
Qobjective, which is calculated with Equation (2).

2.2. System Layout and Features

To test this optimization scheme, a simple dendritic drainage system was modeled
(Figure 2). The network consists of 3 RWH systems, each connected to a main channel
through an outlet. The RWH systems and outlets are identical—to simulate RWH in high-
rise residential buildings, each system collects runoff from a 1000 m2 roof and serves a
building with 150 tenants who have a deterministic water demand pattern. The modeled
tanks have a capacity of 20 m3, in correspondence with the findings of [6,28] regarding the
reasonable tank volume for RWH in high-rise buildings in the Israeli climate.

There are 3 main channel conduits, the distance and slope between each junction of
the main channel are equal, and the RWH system outlets and main channel conduits have
a circular cross-section. The main features of the modeled system are presented in Table 1.
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Figure 2. Modeled drainage system with the corresponding inflows and outflows from the rainwater
tanks. Overflows and controlled releases both flow through the tank outlets.

Table 1. Hydraulic characteristics of the modeled drainage system pipes.

Diameter (m) Length (m) Slope (%) Manning Coeff.

RWH Outlets 1 0.2 200 1 0.012
Main Channel

Conduits 1 0.5 500 1 0.012

1 RWH system outlets and main channel conduits are circular.

2.2.1. Input Data and Storage Tank Mass Balance

For simulating the system’s response to a rain event, it is necessary to provide rainfall
and demand data, which will be used to calculate inflows to and outflows from the
rainwater tanks. To simulate overflows and changes in each tank’s storage, these inflows
and outflows are used to solve a mass balance equation similarly to [28]. This equation is
solved according to the YAS (yield after spillage) principle [29,30]—inflows are calculated
first, then overflows, controlled releases, and finally, yields from the tank.

For each timestep of the simulation, inflows to the tank are the rainfall depth for that
timestep multiplied by the area of the collection surface. For simplicity, it was assumed that
all rainfall is excess rainfall, which flows directly to the rainwater tank without depression
losses. The rainfall data series that were used for this paper include logs from Beit Dagan
meteorological station (32 N, 34.8 E), the oldest automatic rain station located in the Israeli
coastal plain 10 km south-east of Tel Aviv. The rainfall data include two sets in 10 min
resolution: (a) Intensity–Duration–Frequency (IDF) curves for 1-h and 2-h rain, and (b) three
major rain events from the years 2000, 2010 and 2020. The IDF curves were simulated as
constant rain for 1 and 2 h with the intensities presented in Table 2:
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Table 2. Rain intensities (mm/h) for 1 h and 2 h from the Beit Dagan meteorological station.

Probability 1-h Rain (mm/h) 2-h Rain (mm/h)

10% 33.8 21.4
5% 39.9 25.1
2% 48.5 29.9
1% 55.2 33.7

Three real-life rain events were selected to test the efficiency of the proposed optimiza-
tion scheme in response to different real rain patterns and intensities and are presented in
Table 3:

Table 3. Real-life rain events from Beit Dagan’s 10-min rainfall logs.

Date Duration (h) Total Depth (mm) Description Pattern

5 January 2000 14 87.9
Period of intermittent low

intensity followed by several
hours of high intensity rainfall
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were continuously drawn from the tanks (if water is available) during rainy and dry periods.

2.3. Flow Routing

The kinematic wave method [35] was chosen to simulate flow routing from the tanks
outlets down to the system outfall. Although the kinematic wave neglects the inertial
components of the full dynamic wave equations [36], it can be useful to simulate urban
rainfall-runoff when the user acknowledges its limitations [36,37].

The kinematic wave model was applied by calculating the flow cross-section A at the
inlet and outlet of each pipe (tanks outlets and main channel conduits) using Equation (3),
an approximation to the flow–cross-section relationship [38]:

Q = α×Aβ → A = (
Q
α
)

1
β

(3)

where Q is the flow rate (m3/s), A is the flow cross-section (m2), and α, β are the kinematic
wave parameters, equal to

α = 0.501
D

1
6 × S

1
2

n
, β =

5
4

(4)

where D is the pipe diameter (m), and S is the pipe slope (m/m) [39].
These kinematic wave parameters were found to give a good approximation for the

flow–cross-section relationship in circular conduits, better than the “classic” parameters
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proposed in earlier works [38,40] and adopted by [41], and are applicable when the flow
height is less than 90% of the pipe diameter [39].

As flow at the tanks’ outlets is known (overflows and controlled releases are known
for each timestep), the flow cross-section can be calculated at the entrance of each junction
(Figure 1). Inflows to each junction are the flow from the corresponding tank outlet and the
flow that propagated down the main channel from the upstream junction.

To adjust the kinematic wave to the modeled system, the model was calibrated with
the more accurate dynamic wave model used by SWMM using the PySWMM package [42],
where the calibrated variable is the simulation timestep (∆t).

2.4. Simulation—Optimization Process

The program was written in Python. Input data and scripts are available in Github.
See Supplementary Material.

The first stage of the optimization process is a benchmark run of the simulated rain
event without controlled releases, so the network flows are generated from overflows
only. This benchmark run is used to find V, trelease and Qobjective (Equations (1) and (2)
above). The benchmark run also logs the peak flow at the outfall, the volume of supplied
rainwater and the tank storage at the end of the simulation. For this paper, the benchmark
run simulated the system’s response to the recorded rainfall.

2.4.1. Objective Function and Decision Variables

The objective of the optimization process is to produce a flow pattern as similar
as possible to the constant value of Qobjective at the system outfall. To achieve this, the
following objective function is used:

min
n

∑
i=1

∣∣∣Qoutfall(t)−Qobjective

∣∣∣ (5)

where i is the current timestep, n is the number of timesteps (determined by the simulation
length and ∆t), Qoutfall(t) is the flowrate simulated at the system outfall. In practice, the
absolute difference between the flow rate at the outfall and Qobjective is calculated at each
timestep and is summed throughout the simulation run.

The decision variables for the optimization are the percentage of a valve opening
at the bottom of each tank in 10% intervals (i.e., 0%, 10%, 20% etc.) as suggested by
Di Matteo et al. [17]. This approach ensures that the search space will only include feasible
solutions. The valves can change their status at the beginning of each hour. As so, the
number of decision variables is the number of hours until trelease rounded up and multiplied
by the number of tanks. For example, if the last overflow from the tanks during the
benchmark run was recorded in t = 9.5 h, then trelease = 9.5 h and the number of decision
variables is 10 × 3 = 30. The flow rate from the tank valve is calculated by the orifice
flow equation:

Qrelease = Cd ×Aorifice ×
√

2× g× h×
(

Valve%
100

)
(6)

where Qrelease is the flow rate from the tank due to controlled release (m3/s), Cd is the
orifice coefficient, Aorifice is the cross-section area of the orifice (m2), g the gravitational
acceleration (m/s2), h is the water level in the tank (m) and Valve% is the valve opening
percentage. It should be noted that Valve% refers to the orifice cross-section area and not
the orifice diameter.

To calculate Qrelease, the following parameters were used for each tank: Cd—0.6;
orifice diameter—5 cm; tank diameter—2.8 m (assuming circular tanks, the latter is used
to determine h—the water level in the tank). Furthermore, the orifice is installed at the
bottom of the tank.
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2.4.2. Optimization Method

After the benchmark run is complete, a genetic algorithm package [43] is initiated.
Each “chromosome” is a complete policy of valve opening status for each tank for every
hour of the simulated rain event. The fitness of each chromosome is evaluated according to
Equation (5). To accelerate convergence, the initial population is seeded with a chromosome
of all-zeros (i.e., all valves are closed throughout the simulation) and a chromosome that
generates a policy of the valves constantly open at 10%. This, together with an elitism ratio
of 2% [44], ensures that the optimization process will find a release policy that is at least
as fit as the benchmark run of no controlled releases. The optimal chromosome (i.e., the
release policy that results in a flow pattern closest to Qobjective) was logged, together with
the peak flow at the outfall, the total amount of rainwater used and the water storage in the
tanks at the end of the simulation, so they could be compared with the corresponding logs
from the benchmark run.

2.5. Result Evaluation

The optimal chromosome is evaluated by two parameters: (1) reduction in peak flow,
and (2) reduction in rainwater availability (which equals the volume of rainwater used plus
the storage in the tanks at the end of the simulations). Naturally, a favorable solution is one
that reduces peak flows significantly while having minimal impact on rainwater availability.

To compare the performance of the proposed scheme with an established control
method, the above-mentioned events were simulated with the predictive control method
of releasing water from the tank when overflow is expected in a pre-determined forecast
horizon [13,15].

This method was further developed by Snir and Friedler [28], who suggested a new
variable α to enable more flexible control over the release policy. α is defined between 0
to 1, and its value determines the fraction of water storage that will remain in the tank
(e.g., α = 0.4 means that the release valve will be closed, and release will stop after the water
volume in the tank decreases to 40% from its full capacity). This method enables the user
to prioritize the system’s ability to supply water or to reduce peak flows—lower alphas
mean more available storage prior to a predicted overflow, thus better ability to mitigate
flows. Higher alphas mean keeping more water in the tanks, thus more water available for
supply, but less free storage and higher overflows.

3. Results

To establish the optimization concept and test the resulting controlled release policies,
the simulation-optimization process was first conducted with the IDF curve data as rain
input with a 3-hour dry period before each simulation, where the tanks are full at t = 0. As
the controlled release policies are in 1-h resolution, the resulting policies of the 1-h rain
data were four decision variables for each tank—one for each hour of the dry period and
another to the 1 h of rain. In the same way, the 2-h rain inputs resulted in deciding on
5 valve openings for each tank—three for the dry period and two for the rainy duration.

After the establishment of the process on the above-mentioned simple synthetic rainfall
data, the real-life rain events described in Table 3 (above) were used as input. To test the
scalability of the optimization process, no changes were made to the program. The rain
events were used as-is without a preliminary dry period, but the tanks were set to be empty
at t = 0 (which is expected after 3–5 days of dry weather).

3.1. IDF Curve Rainfall

The optimization process was run for the rain intensities from Table 2. The rain was
modeled as constant rain for 1 and 2 h with a 3-h period of no rain at the beginning of
each simulation, and all tanks were at their maximum capacity of 20 m3 at t = 0. The
effects of applying the release policy generated by the optimization process are presented
in Table 4. These effects include the reduction in the peak flow recorded at the outfall and
the reduction in available rainwater due to the controlled release. The latter is calculated
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by adding the total amount of supplied rainwater to the overall water stored in the three
tanks at the end of the simulation. The full results of the simulations, including recorded
peak flows and rainwater availability, are available in the Appendix A (Table A1).

Table 4. Peak flow reduction and rainwater availability reduction due to implementing the optimized
control release policy for each rain intensity for 1-h and 2-h rain.

Probability Rain Intensity
(mm/h)

Peak Flow
Reduction (%)

Rainwater Availability
Reduction 1 (%)

1-h rain

10% 33.8 33.6 0.8
5% 39.9 18.1 1.2
2% 48.5 8.2 1.1
1% 55.2 3.7 1.4

2-h rain

10% 21.4 19.9 0.4
5% 25.1 15.0 0.7
2% 29.9 0.3 0.1
1% 33.7 0.3 0.1

1 Rainwater availability is the volume of rainwater used during the simulation plus the overall stored water in the
tanks at the end of the simulation.

The reduction in rainwater availability was negligible in every simulation, with a
maximum reduction of 1.4%. Moreover, controlled release policies for high and moderate
probabilities were able to substantially reduce peak flows. However, implementing con-
trolled releases does not improve the system’s ability to reduce flows in continuous and
intense rain events such as the 1-h rain of 1% probability and the 2-h rain of 2% and 1%
probabilities. The optimized release policies fail to overcome RWH’s known shortcoming
of dealing with such rain events, especially considering that the synthetic rainfall inputs
have no intermissions, which release policies might capitalize on to empty the tanks. This
principle is apparent in Figures 3 and 4, which present the optimized outfall flow patterns
and the release policies that produced them. The figures present the results of a constant
rain event with a probability of 5%—Figure 3—an event of one hour with rain intensity
of 39.9 mm/h (or 6.65 mm/10-min), and Figure 4—an event of 2 h with rain intensity of
25.1 mm/h (or 4.18 mm/10-min).
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Figure 3. Results of applying the optimization process on a 1-h constant rain event of 5% probability.
(a) Flow pattern of benchmark run (no controlled releases—red) and from applying the optimized
controlled release policy (blue). Qobjective, which was used to evaluate the policy’s fitness according to
Equation (5), is plotted in dashed green. (b) The control release policy that was derived by applying
the genetic algorithm—the degree of each valve’s opening during the simulated event. (c) Water
stored in each tank during the simulated event.

The simplicity of the rain event and the fact that the release timesteps are 1 h in
duration means that the solution can be divided into two time periods: before the rain
begins and during the rainy hour. To maintain a flat flow pattern as much as possible, the
solution empties the tanks gradually until the rain begins at t = 3 h—tank 2 empties first,
then tank 1 and tank 3, the closest to the outfall, empties last. During the rainy hour, the
valves are open at the mid-range values of 40–70% and are used to throttle the flow and
are managing to do so until all the tanks are full at t = 3.8 h. The attenuation effect of the
drainage network is preventing the flow at the outlet from reaching a steady flow of 33 LPS
as in the benchmark run, even though the outflows from the tanks between t = 3.8–4 h are
equal to those of the benchmark run. This means an 18% reduction in the peak flow.
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policy (blue). Qobjective, which was used to evaluate the policy’s fitness according to Equation (5), is
plotted in dashed green. (b) The control release policy, which was derived by applying the genetic
algorithm—the degree of each valve’s opening during the simulated event. (c) Water stored in each
tank during the simulated event.
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The solution of the 2-h rain event displays a similar pattern of gradually emptying the
tanks prior to rainfall. However, there is a possibility to change the valves’ opening settings
at halfway of the rainy period—t = 4 h. This gives more flexibility to the solution, which
the algorithm utilizes by opening the valves to the range of 70–100% during the first hour,
and then closing them to 10–40% during the second hour. This causes a decrease in the
flow during the first half of the 5th hour until the tanks are full, when as in the 1-h event,
the attenuation effect of the system prevents the outfall flow rate from reaching a steady
state until the rain ends, and the solution manages to decrease the peak flow by 15%.

3.2. Real Rain Events

To test the suggested control concept, the algorithm was run on three recorded rain
events, which are described in Section 2.2.1 and in Table 3. The program was run without
any modifications besides changing the rainfall input and setting the initial storage of each
tank to 0 in order to simulate a rain event with a preceding dry period (very common in
the Mediterranean climate). Results for peak flow reduction and the impact on available
rainwater are presented in Table 5. The full results of the simulations, including recorded
peak flows and rainwater availability, are available in the Appendix A (Table A2).

Table 5. Peak flow reduction and rainwater availability reduction achieved by applying the optimized
controlled release policy on each rain event.

Date Total Rain Depth
(mm)

Max. 1-h Intensity
(mm/h)

Peak Flow
Reduction (%)

Rainwater
Availability

Reduction (%)

5 January 2000 87.9 26.5 45.0 3.3
25–26 February 2010 85.1 17.9 55.2 24.8

20–21 November 2020 87.4 51.7 29.7 1.5

The optimized controlled release policies were able to substantially reduce peak flows
in all three events, with a significant impact on available rainwater only in the 2010 event.

3.2.1. 5 January 2000

With a total of 87.9 mm recorded in 14 h, this rainfall pattern consists of intermittent
rainfall for approx. 7 h, a dry period 3 h and an intense shower of 60 mm in 4 h. In the
benchmark run, the first period of rain filled the tanks as could be deducted from the rise
in flow around t = 6 h (Figure 5a). Demands during the dry period were not able to extract
enough water from the tanks, and the intense shower caused a noticeable rise in flow at the
outfall of the simulated system.

The optimized release policy started to release water from t = 0 h while maintaining
a flat pattern similar to Qobjective (Figure 5a,b). As a result, the tanks were not filled, and
their storage did not surpass 40% of their full capacity (Figure 5c). All three tanks were
emptied until t = 8 h. During the first 2 h of the intense rainfall (t = 9–11 h), the valves’
opening percentages ranged from 70% to 100%, but were reduced at t = 11 h as the tanks
had sufficient empty storage to handle the remaining inflows. This policy flattens the local
maximum shortly before t = 12 h.

In total, the controlled release policy was able to reduce the peak flow at the outfall
from 33 to 18 LPS while reducing the volume of available water from 67.4 to 65.2 m3.

3.2.2. 25–26 February 2010

The 2010 rain event showed similar total rain depth and duration (85.1 mm and 13 h,
respectively) to the 2000 event, but with a significant shower starting in t = 0 h until t = 6.5 h.
After an intermission of 2 h, 4 bursts of rainfall were recorded with short breaks between
them (Figure 6a). With no controlled release, the tanks were filled by t = 3 h and remained
full throughout the event, and the peak flow at the system’s outfall was generated during
the first rain burst after the intermission before t = 10 h (Figure 6a).
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was used to evaluate the policy’s fitness according to Equation (5), is plotted in dashed green. (b) The
control release policy, which was derived by applying the genetic algorithm—the degree of each
valve’s opening during the simulated event. (c) Water stored in each tank during the simulated event.
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The controlled release policy opted towards significant releases in the first 2 h of the
event, presumably to avoid the high flows right before and after t = 4 h, which occurred
in the benchmark run (Figure 6b). This course of action led to the tanks being full only
after t = 4 h (Figure 6c), in comparison to t = 2 h during the benchmark run, and to a
significant reduction in flow during the initial rain shower. The controlled release policy
almost completely emptied tanks 1 and 2 during the intermission but kept the valve of tank
2 at an opening percentage of 10% from t = 9 h onwards, which caused it to be the only full
tank at the end of the rain event at t = 13 h. The fact that tanks 1 and 3 were not full by the
end of the event caused a significant impact on the rainwater availability, reducing it by
25% in comparison to the benchmark run.

3.2.3. 20–21 November 2020

The rain system of November 2020 was one of the most intense in Israeli rainfall
records, although spatially limited mostly to the mid-northern coastal plain. With some
areas receiving more than 200 mm in less than 48 h, the system caused both pluvial and
flash floods across the coastal plain [31]. Although the total measured rain depth in Beit
Dagan meteorological station was only 104.7 mm, 51.7 mm was recorded in just one hour,
of which 41 mm was recorded in just 30 min. The simulated rain event included this period
of intense rainfall.

The simulated event has similar total depth and duration to the previous events
(87.4 mm and 11 h, respectively), but as mentioned, displays a short period of extreme
intensity after 9 h of sporadic showers (Figure 7a). These early showers were able to fill the
tanks and cause overflows by t = 8 h as indicated by the rise in the outfall flow recorded
during the benchmark run (Figure 7a).

The release policy main objective in this event was to keep maximum available storage
free before the intense shower starts at t = 9 h. This was achieved as can be seen in
Figure 7c—the tanks were full only after 10 h in comparison to 8 h in the benchmark run.
This enabled better control of the incoming flows and a reduction of 30% in the peak flow
recorded at the outfall.
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Figure 6. Results of applying the optimization process on a rain event recorded by the Beit Dagan
meteorological station on 25–26 February 2010. (a) Flow pattern of benchmark run (no controlled
releases—red) and from applying the optimized controlled release policy (blue). Qobjective, which
was used to evaluate the policy’s fitness according to Equation (5), is plotted in dashed green. (b) The
controlled release policy, which was derived by applying the genetic algorithm—the degree of each
valve’s opening during the simulated event. (c) Water stored in each tank during the simulated event.

3.3. Comparison with the Alpha Releases Method

To compare the α method to the current scheme, 10 different alphas between 0 to
0.9 were examined in each of the three measured rain events. To reduce the number
of presented results and to exclude any possible bias that might occur when choosing
specific alphas, peak flow reduction and rainwater availability reduction resulted from the
proposed optimization process will be compared with the highest peak flow reduction and
the lowest rainwater availability reduction that resulted in running the full range of alphas.
Naturally, the best peak flow reduction was achieved when setting α = 0 (leaving no water
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in the tanks) and the lowest rainwater availability reduction was achieved when setting
α = 0.9 (leaving 90% of each tank’s water storage).

As presented in Table 6, the proposed optimization method outperformed the α

parameter method even with choosing the best results from the entire range of the latter,
except from the high impact on rainwater availability the former had in the 2010 event.
This advantage is further demonstrated in Figure 8, where the flow patterns resulting from
the benchmark runs and the optimized control policies are plotted with the full range of
flow patterns created by the α parameter method. This range was plotted by finding the
maximum and minimum flow of the entire α range (0–0.9) in each timestep, i.e., the top
and bottom bounds of the shaded area are not a result of a single value of α.
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was used to evaluate the policy’s fitness according to Equation (5), is plotted in dashed green. (b) The
controlled release policy, which was derived by applying the genetic algorithm—the degree of each
valve’s opening during the simulated event. (c) Water stored in each tank during the simulated event.

Table 6. Peak flow reduction and rainwater availability reduction, resulting from applying either the
optimized controlled release policy or the alpha release policy on each of the three rain events.

Date
Proposed Optimization Method α Parameter 1

Peak Flow
Reduction (%)

Rainwater Availability
Reduction (%)

Highest Peak Flow
Reduction (%)

Lowest Rainwater
Availability Reduction (%)

5 January 2000 45.0 3.3 39.8 8.1
25–26 February 2010 55.2 24.8 29.3 8.8

20–21 November 2020 29.7 1.5 17.3 8.3
1 Best results of the entire possible range of α.

As shown by Snir and Friedler [28], the α parameter method can reduce peak flows
significantly, but with a price of reducing rainwater availability, especially with lower
alphas. However, the suggested optimization method manages to reduce peak flows more
efficiently, especially when the rain event is characterized by multiple local maxima in
flows such as the 2010 storm. Moreover, unlike the suggested policy optimization method,
which opts to flatten the flow pattern, using the α method might introduce surges in flows
caused by the releases themselves, as seen in Figure 8a at t = 9 h and in Figure 8b at t = 2 h
and t = 8 h. It should be noted again the shaded area and its bounds do not represent a
single value of α. An example of this can be seen in Figure 8b between t = 7–10 h—it is not
possible to produce a flow pattern that is characterized with the lower bound of the α flow
range shortly before t = 8 h and the lower bound shortly before t = 10 h. The first is a result
of a higher α—less water is released prior to the expected overflow, but the latter is a result
of lower α, which released more water before the storm.
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Figure 8. Comparison of the generated flow patterns from the benchmark run (red), the sug-
gested controlled release optimization scheme (blue) and α parameter method (green area), tested
on three recorded rain events (see Section 2.2.1) (a) 5 January 2000; (b) 25–26 February 2010;
(c) 20–21 November 2020 (plots were enlarged at t = 10 h—time of the recorded peak flow). Note that
the α flow range upper and lower bounds are the maximum and minimum flow generated by the
entire α parameter range (0.0–0.9).



Water 2022, 14, 571 19 of 24

4. Discussion
4.1. Objective Function

RWH and RTC of RWH systems are set to achieve two objectives: (a) Save potable
water and (b) mitigate peak flows in the urban drainage system; the latter can also include
basin baseflow restoration in its broader sense [15,16]. As these two objectives often
compete, active decisions about whether to release or hold rainwater should be a result
of multi-objective optimization in order to fully comprehend the actual costs and benefits
of such decisions. However, multi-objective optimization usually requires putting the
objectives on level grounds by examining weights on each objective or to reveal a range
of optimal solutions without making actual decisions by finding a Pareto front [45]. Thus
far, research on the dual benefit of RWH was limited to optimizing only one objective
(e.g., minimizing peak flows [17,18]), demonstrating the cost in potable water savings when
applying RTC to mitigate peak flows [13,15,16] or exploring ways to show a range of RTC
solutions from which a stakeholder might be able to choose from (e.g., α parameter as a
decision variable [28]).

The main advantage of the proposed optimization method, and especially the objective
function in its base (Equation (5)), is that it captures both objectives in one mathematical
term, thus dismissing the need to assign weights to the different objective or generate
Pareto fronts. By finding a control policy that generates a flow pattern as close as possible
to Qobjective, the control policy aims to release a volume of water that is not greater than the
volume of overflows without control release, as well as creating a flat flow pattern. More-
over, this method is scalable and could be easily adjusted to any rain event as demonstrated
in this paper.

4.2. Constant Rain Intensities

To examine the policy optimization process, 10 different rain intensities from the Beit
Dagan 1-h and 2-h IDF curves were used as input. As the rational method for calculating
peak flows is still a common practice in Israel (although not very accurate [46]), data from
IDF curves is the common input for designing and examining various aspects of urban
drainage systems. This, together with the relative simplicity of the rainfall patterns, were
the reasons to firstly examine the suggested optimization method on this type of input.

Intuitively, the method of mitigating flows generated from a steady rainfall shower is
to empty the storage units right before the rain starts (assuming that the storage units are
not empty at the beginning of the simulation). The suggested algorithm was opting for this
strategy in all of the simulations. The algorithm also tended to keep the valves open during
the storm, and by that, releasing water from the tanks with a flow lower than the overflow,
which would have occurred if the tanks were full. This way of throttling the flow kept the
tanks from filling up quickly, thus managing to further reduce the simulated peak flow.

However, constant rainfall, which is rare in reality, gives no intermissions for the
algorithm to take advantage of, and insignificant peak flow reductions were achieved in
trying to cope with higher (and rarer) rain intensities.

4.3. Recorded Rain Events

In contrast to the constant rain intensity simulations, the input of actual rain events
allowed the algorithm more flexibility in managing storage and flows. An example could
be seen in the rain event of 2010 (Figure 6)—during the last 2 h of the first rain shower
(t = 2–5 h), the release policy opted towards a small opening percentage of the valves,
thus allowing the tanks to fill and overflow. However, this enabled the constant release of
water throughout the 3 h intermission without completely emptying the tanks and better
handling the second part of the rain event from t = 9 h onwards. This behavior shifted the
recorded peak flow from t = 9.5 h during the benchmark run to t = 4.5 h and allowed a
significant improvement in peak flow reduction in comparison to the α parameter method
(Figure 8b).
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The advantage of the suggested policy optimization method over simply releasing
water prior to an expected overflow is apparent in all simulated events. The writers believe
that the reason for this advantage is the manner of finding Qobjective, the key variable in
the objective function. Qobjective is calculated using the system’s response to a specific
rain event. By considering the outfall flow rate function and the total time of the event
(Equations (1) and (2)), Qobjective is tailored to find the optimal flow pattern of a specific
system to a specific rain event and includes all influencing parameters such as collection
surface area, demands from the rainwater tanks, tanks’ capacity, drainage system layout
and design, and the rain event’s pattern and intensity.

4.4. General Discussion and Future Research

As aforementioned, the presented approach tends to make use of intermissions be-
tween showers and achieves lesser results when dealing with constant and steady rainfall.
This behavior is an advantage when applied to Israel’s typical rainfall patterns, which tend
to be a result of cold fronts and thus scattered with high temporal and spatial variability.

However, this variability increases the algorithm dependency on accurate rain fore-
casts. As explained in the “Methods” section, the presented method is regulating the
rainwater tanks according to a benchmark run. The results presented here are the outcome
of a process that uses the same rainfall data for optimization and for the solution evaluation,
thus simulating rain events with perfect knowledge of the rainfall’s depth and temporal
distribution. Future work should simulate more realistic scenarios where the benchmark
run and optimization are executed with rain forecasts that do not fully correspond with
the measured rainfall data. This will introduce uncertainty and risk, which will probably
reduce the algorithm efficiency. However, this reduction could be mitigated by various
methods within the field of RTC of drainage systems [47], including the implementation of
Model Predictive Control (MPC) [24,48,49] where the simulation-optimization routine is
performed with a receding forecast horizon throughout the duration of the rain event, thus
allowing to update the rain forecast as the event progresses.

As the scope of the presented work includes only rooftops as surfaces that contribute
to runoff and drainage flows, another step towards more realistic simulations will be the
modeling of an actual urban catchment, including pervious and non-previous areas that
affect drainage flows, but their runoff is not collected by RWH systems. As the flows
generated from these non-collectable areas cannot be controlled by regulating the valves of
the RWH tanks, the writers believe that this step will not require significant alterations of
the algorithm or the optimization scripts. Moreover, during examination of the generated
control policies, the algorithm occasionally yielded different control policies, which resulted
in similar flow patterns at the system outfall. It is assumed that due to the similarity of
the modeled RWH systems (i.e., identical tank size and collection area), the optimized
control policy is not unique in its fitness. It is expected that modeling more realistic
catchments with variability between different RWH systems, in addition to more complex
drainage networks with varying pipe diameters, slopes and lengths will result in significant
differences between examined release policies.

Another possible development will be a temporal expansion of the optimization
routine to simulate entire rainy seasons and to conduct pluriannual evaluations of peak
flow reduction and rainwater availability, as conducted in [28] for a single building.

5. Conclusions

This paper presents a proof of concept to a method of producing control policies for
the centralized operation of a distributed network of RWH systems as a part of an urban
drainage system. The suggested method utilizes the drainage system’s response to a given
rain event, analyzes the flow pattern at the network’s outfall and aims to produce a new,
flat flow pattern by regulating valves of the modeled RWH systems. This simulation-
optimization procedure enables the use of a simple objective function, which accounts
for both benefits of RWH—mitigation of peak drainage flows and alternative sources for
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domestic water consumption. As these two gains often compete, an optimization process
that captures both without using weights or creating Pareto fronts might prove to be a
useful tool in future research in the field of RTC of RWH systems.

After applying the suggested approach on a simple network of RWH systems and
drainage conduits, the following conclusions could be drawn:

• The process successfully utilizes dry intermissions between rain showers in order to
flatten the flow pattern throughout the rain event.

• When compared to a conventional RWH systems, applying the control policies gener-
ated by the suggested method significantly improves the system’s ability to mitigate
high drainage flows.

• When compared to other methods of controlled release, the suggested method outper-
forms in both peak flow reduction and rainwater availability.

To conduct more realistic simulations and assessments of the presented approach,
future research will include:

• Introducing uncertainty by using rain forecasts as input for the benchmark and opti-
mization runs rather than the actual rainfall data and then comparing them ex-ante
with real rainfall.

• Modeling realistic urban catchments and drainage networks, in which different RWH
systems have different attributes and drainage conduits vary in diameter, slope
and length.

• Introducing stochastic demand patterns rather than deterministic as suggested by Snir
and Friedler [28].

Although applying these developments is likely to produce less favorable results than
those portrayed in this paper, their implementation will bring about further improvements
to the algorithm and the development of the field of centralized control of decentralized
RWH systems in general.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/oferst13/Concept-Controlled-Release: Python scripts and input rain files.
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Appendix A

Table A1. Results of applying the optimization method on constant rain intensities from the Beit
Dagan IDF curve.

Probability
(%)

Benchmark Peak
Flow (LPS)

Controlled Peak
Flow (LPS)

Peak Flow
Reduction

(%)

Benchmark
Available

Rainwater (m3)

Controlled
Available

Rainwater (m3)

Rainwater
Availability

Reduction (%)

1-h rain

10 28 19 33.6 60.89 60.38 0.8

5 33 27 18.1 60.89 60.16 1.2

2 40 37 8.2 60.89 60.19 1.1

1 46 44 3.7 60.89 60.01 1.4

2-h rain

10 18 14 19.9 61.04 60.77 0.4

5 21 18 15.0 61.04 60.58 0.7

2 24.9 24.8 0.3 61.04 60.95 0.1

1 28.04 27.96 0.3 61.04 60.95 0.1

Table A2. Results of applying the optimization method on measured rain events from the Beit Dagan
rain gauge.

Date
Benchmark Peak

Flow (LPS)
Controlled Peak

Flow (LPS)
Peak Flow

Reduction (%)

Benchmark
Available

Rainwater (m3)

Controlled
Available

Rainwater (m3)

Rainwater
Availability

Reduction (%)

5 January 2000 33 18 45.0 67.4 65.2 3.3

25–26 February 2010 23 10 55.2 66.7 50.2 24.8

20–21 November 2020 90 63 29.7 65.5 64.5 1.5
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