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Abstract: Water storage tanks are one of the primary and most critical components of water distri-
bution systems (WDSs), which aim to manage water supply by maintaining pressure. In addition,
storage provides a surplus source of water in case of an emergency. To gain the mentioned advan-
tages, storage tanks are incorporated in most WDSs. Despite these advantages, storage can also
pose negative impacts on water quality, thereby affecting water utilities. Water quality problems are
a result of longer residency times and inadequate water mixing. This study aimed to construct a
model of a tank’s water quantity and quality by formulating and solving governing equations based
on inlet/outlet configurations and processes that influence the movement of water and chemical
substances inside it. We used a compartment model to characterize the mixing behavior inside a
tank. A water quality simulation model with different compartment arrangements was explored for
extended filling and draining of storage, which was further validated using a previously published
case study.

Keywords: distribution storage; water quality; analytical approach; mathematical modeling;
conservative material; decaying substance

1. Introduction

Multiple infrastructures gather, store, treat, and distribute water from a water source
to customers with variable demands in a water supply or distribution system. Any water
distribution system (WDS) should provide water in sufficient quality and pressure by
integrating these infrastructures. Water storage is one of the most prominent and essential
components of water supply systems used to manage water supply by ensuring hydraulic
reliability through maintaining pressure. Furthermore, this storage can be used as a water
source at times of emergency or power outage [1].

Many WDSs in high-water-demand areas use large volume tanks that are positioned,
constructed, and operated primarily for structural safety and hydraulic resiliency [2]. How-
ever, utilizing them raises water quality concerns, such as poor mixing and lengthening the
retention duration (the length of time spent in the water inside the tank before being drafted
for use) [3]. An extended retention period causes the water to become older. Due to this,
the concentration of disinfectants will not be powerful enough to stop germs from growing
in the distribution system. Reduced disinfectant residuals, bacterial growth, nitrification,
growth of disinfectant by-products, and the development of aesthetic alterations in water
taste, odor, and appearance are the most significant effects on water quality [4]. Such events
directly impact water quality, which is in direct opposition to the need for more water. In
addition, the breakdown of water quality in storage might impair the overall efficiency of
the WDS.

Substantial research has been carried out to better understand the phenomena that
occur in storage facilities related to water quality. Mixing and aging are two interconnected
phenomena that affect water quality [5]. When water enters a storage tank, it may be of
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acceptable quality, but it may be of poor quality when it leaves the tank. If a reservoir is not
correctly vertically mixed, stratification ensures that the water near the surface is retained
for longer [6]. An experiment conducted by [7] showed that ammonia-oxidizing bacteria
(AOB) concentrations in the surface layer (0.3 m below the surface) were 10–20 times
greater than concentrations 5 m below the surface. The deterioration of water quality in
Philadelphia’s ground-level storage tanks was investigated by [8]. During the summer,
reservoirs were discovered to have thermal, chemical, and microbiological stratification. A
long detention time can cause the disinfectant residuals to diminish, leaving the finished
water vulnerable to additional microbiological pollutants that exist in the distribution
system downstream of the storage facility [8]. A loss of chlorine residuals and subsequent
biological growth can theoretically result in sour flavors [9]. As a result, in the design
and operation of distribution system storage facilities, limiting the detention time and
preventing parcels of water from remaining in the storage facility for lengthy periods
should be implicit goals.

Because water quality issues are crucial in the design and operation of water storage
facilities, various innovative sampling techniques have been used to evaluate the temporal
and spatial distribution of water quality within and outside the tank. Although this is
one approach to identifying potential water quality issues, its application is limited to
researching remedies for water quality problems. Modeling water tanks and reservoirs
should be the primary method for examining different design, upgrade, and operation
approaches for decreasing negative water quality impacts [10].

Water quantity and quality modeling, in general, covers a wide range of issues and
necessitates the collaboration of several disciplines. For example, water flow and mixing
mechanisms are influenced by hydrology and hydrodynamic parameters [11] All physi-
cal movement, such as advection and diffusion (or dispersion), the chemical process of
dilute solutions, chemical kinetics, and biology are taken into account when deciding
the fate of molecules dissolved or suspended in water. Issues with water quality can
arise from a variety of sources. For example, water storage facilities have problems with
microbiological, chemical, and physical impurities [12]. Some scholars have proposed
methods for simulating changes in water quality in pipe distribution networks, assuming
that the storage facilities are continuously stirred tank reactors (CSTR) with complete
and immediate mixing [13,14]. However, due to the complexity of the hydraulic patterns
contained within these facilities, the assumptions may not be applicable in all storage
configurations [11,15,16].

In the last two decades, a multi-compartment modeling approach has been used to
assess water quality under the assumption that the interchange between compartments is
the primary physical process inherent in storage reservoirs [15,16]. Explicit analytical or
numerical solutions have been provided by formulating various configurations in terms
of the number of compartments, the arrangement of inlet/outlet, the flow mechanism,
or the decaying behavior of the substance [11,13,15,16]. Most simulation problems are
solved using numerical methods that give an approximation result. Numerical solutions
generally only produce one answer. Analytic/symbolic solutions, on the other hand,
provide answers to a wide range of problems. In other words, the numerical technique
must be recalculated for each set of parameters. In contrast, the analytic approach allows
for all (or at least some) solutions at once. A three-compartment hydraulic storage tank
model based on hydrodynamic and statistical methods to forecast tracer concentration
variations over time and model water’s age was built by [4]. In 2000, the EPANET water
quality mixing model was developed. It characterizes mixing within storage tanks using
four alternative models (full mixing, two-compartment mixing, first-in–first-out (FIFO)
plug flow, and last-in–first-out (LIFO) plug flow) [17]. The developed models [15,16] take
into consideration five different multi-compartment arrangements—a continuous flow
stirred tank, a two-compartment tank, a three-compartment tank, a four-compartment tank,
and a plug-flow tank. The turbulent flow patterns within the storage tanks significantly
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impact the mixing behavior and its implications on water quality. Explicit analytical
methodologies were used to arrive at the solution.

This paper includes descriptions of multiple investigations and the results, producing
a comprehensive mathematical model of water quantity and quality in water storage
(tanks) using analytical approaches. This study provides a mathematical formulation
of water quantity and water quality in water storage (tanks) using analytical solutions.
Analytical solutions were provided in the past for this problem, but this study extended and
combined previous solutions in one comprehensive paper for multiple cases of inputs and
outputs of water quality constituents to water distribution system tanks for conservative
and non-conservative water quality parameters. The proposed method should aid in
the management of distribution water quality, and the proposed equations’ performance
was demonstrated through various examples and compared to numerical finite-difference
methodologies. In addition to assisting with water quality control, the model can be
utilized for multi-objective optimization in WDS management. WDS management issues
include competing objectives, such as lowering design and operational costs, maximizing
reliability, limiting hazards, and minimizing deviations from water quantity, pressure, and
water quality targets. Multi-objective optimization algorithms allow for optimizations
that consider multiple objectives simultaneously; each goal can be a minimization or a
maximization of output [18].

2. Model Development

In this study, a three-compartment model for conservative material and a two-
compartment model for non-conservative material were created using a conceptual
picture of the internal reservoir mixing and flow patterns. Discrete volume compartments
were used to illustrate these mixing features [16]. In addition, calibration was used to
determine the capacity of each compartment. It was assumed that the outflow was always
at the bottom, and the inlet could come from any compartment level in both circumstances.
The flows were traditional inflow/outflow storage tanks, in which the water volume
expands and contracts in response to service demand [11]. For both situations, the following
basic assumptions were used to develop the analytical solutions to mixing behavior.

For a given period, the inflow and outflow rates were constant. Even though this is
not an actual occurrence in WDSs, it was assumed that the given duration corresponded
to the time during which either the inflow or outflow was constant [15,16]. The flow rate
between compartments was assumed to be constant. The interchange flow rates between
compartments were represented as constant flow rates. In contrast, the flows in and out of
the tank’s variable bulk volume compartment were modeled as tank inflow and outflow,
respectively [15,16]. Consistency was maintained in a compartment with changing bulk
volumes. The volume of the bulk volume compartment may change over time depending
on the difference between inflow and outflow [11,15,16]. The flow was unidirectional
and ran either into or out of the tank or any compartment, but not simultaneously. This
assumption remains true for most storage facilities for short periods [15].

Chlorine decay was assumed and related to conceptual transport models that consider
the tank an ideal reactor, such as the continuous flow stirred tank reactor (CSTR), consisting
of an intensively mixed volume with a uniform concentration distribution, and the plug
flow reactor (PFR), where transport is only due to advection in the flow direction and
complete transverse mixing [2]. The initial concentrations are simplified so that before in-
teracting with the next compartment, each upstream compartment is permitted to establish
a pseudo equilibrium condition at each step. As a result, the concentration transmitted
to the next compartment is assumed to be constant. This assumption is valid for a short
period of time [15].

For non-conservative species, the boundary concentrations were kept constant for
exponential compounds. When factoring out the decay behavior of reactive chemical
material, this assumption is a mathematical idea that gives the differential equations the
correct form regarding nonhomogeneous boundary conditions. The decaying coefficient
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is the first-order kinetic reaction rate coefficient, which could be calculated based on the
premise mentioned above [15,16].

Using the aforementioned assumptions, the system of equations describing mixing in
the tanks for each model was effectively reduced from a set of dependent, linear differential
equations with non-constant coefficients to a series of independent, linear differential
equations with either constant coefficients or separate terms, where all equations are
solvable by direct integration. These assumptions aid in the development of explicit
analytical solutions for the given models [15].

3. Mathematical Solution

The general mass balance equations’ formulations and solutions for conservative and
non-conservative substance compartment models are provided here. A single decay term
describes the degradation of any chemical species in water for decaying compounds.

3.1. Conservative Material

The mixing behaviors inside the tank were modeled in this research using a three-
compartment model. Three different compartments make up this model, which approxi-
mates the spatial distribution of constituent concentrations. Each of the three compartments
was represented as a thoroughly mixed volume element, with the flow and dissolved ele-
ments passing directly between them [14]. The tanks were traditional inflow/outflow tanks
that fill or drain as needed rather than simultaneously. Assuming that each compartment
defines the varied mixing behaviors in a separate tank segment, a basic mass balance
equation was used to describe the mixing situation in each compartment. The entry point
can come from any compartment, while the outlet is located at the bottom. The chemical
compound fluoride (conservative species) was thought to be present in the water. Figure 1
depicts the model schematic where the inlet and initial water level were located at the
bottom (Compartment A).
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Figure 1. A tank with three compartments (A, B, C).

The general formulas describing the change of fluoride/chlorine concentration in each
compartment are shown in Equations (1) and (2).

dV(t)
dt

= Qin(t) − Qout(t) (1)

d(C(t)V (t)
dt

= Qin(t)Cin(t) − QoutC(t) (2)

or, equivalently, V(t)dC(t)
dt +C(t)dV(t)

dt = Qin(t)Cin(t) − Qout(t)C(t).

3.1.1. Inflow Conditions

Each compartment’s governing equations were determined by the inlet/outlet con-
figuration and the initial water level in the tank. There were three water input points and
three water levels to start with, as shown in Figure 1. When all permutations are taken
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into account, there are nine tank configurations. The mass balance was used to create the
differential equation in each compartment of the nine layouts. In any compartment, con-
centration fluctuations occurred when different water concentrations were mixed or when
the incoming water had a time-dependent inlet concentration. When the compartment was
empty and no additional water was being introduced, the concentration remained at zero.
Table 1 contains a summary of all cases at the filling stage.

Table 1. Multiple cases for three compartments during the filling stage.

Inlet Point
Level of Water Compartment A Compartment B Compartment C

Compartment A
A B C A B C A B C

Case 1 0 0 Case 2 Case 3 0 Case 4 Case 5 Case 6

Compartment B
A B C A B C A B C

Case 7 0 0 Case 8 Case 9 0 Case 10 Case 11 Case 12

Compartment C
A B C A B C A B C

Case 13 0 0 Case 14 Case 15 0 Case 16 Case 16 Case 18

The first column represents the inlet locations, and the first row shows the initial water
level. For example, for the first combination, where both the inflow point and the initial
water level were in Compartment A, separate differential equations had to be generated
for each compartment. In Case 1, the new water arriving was mixed with the old water
that was previously present in Compartment A. If the two water concentrations differed,
there was a change in concentration in Compartment A. Compartments B and C, on the
other hand, contained no concentration because they were both empty in this situation. No
additional water entered them during the filling stage of Compartment A.

In Case 2, the intake point was positioned in Compartment A, and the initial water
level was located in Compartment B. Because Compartment A was full, there was no
change in water volume. However, concentrations fluctuated if the intake and starting
concentrations in the compartment were not the same. In Case 3, the newly mixed water
from Case 2 entered Compartment B straight from Compartment A. In some instances, the
resulting differential equation may be symmetric. Cases 1, 7, and 13 were, for example,
identical. Even though the inlet locations were different, the mass balance for Compartment
A during the filling stage was the same as long as the water level was in Compartment
A. When there was no mixing, the concentration remained constant. In Case 8, both
the water level and the entry points were initially in Compartment B. This signifies that
Compartment A was a dead zone during the filling stage of Compartment B. Because it
received no additional water from the outside, its concentration remained constant over
this time. Generally, the steps to find an analytical solution for the concentration as a
function of time in any compartment are described in Figure 2.

A brief analytical solution formulation for each compartment for all nine-tank arrange-
ments was detailed during the filling cycle. The output point was closed during this period,
and there was no outflow (Qout(t) = 0).
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Configuration 1: Initial Level of Water and Inlet Point of Compartment A

The tank had three compartments, each with fixed volumes of VA, VB, and VC.
Calibration was used to determine the capacity of each compartment. Water at a constant
flow rate of Qin(t) and a fluoride concentration of Cin(t) was supposed to enter the tank
through Compartment A for specific delta t(∆t). Thus, the tank has an initial water
volume given as V0A and an initial fluoride content of C0A. Figure 3 shows a graphical
representation of the arrangement.
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Case 1: Compartment A (Figure 3a).

dVA(t)
dt

= Qin(t) − Qout(t) (3)

d(C A(t)VA(t))
dt

= Qin(t)Cin(t) − QoutCA(t) (4)
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Since there is only filling, Qout(t) = 0.

dVA(t)
dt

= Qin(t) (5)

d(C A(t)VA(t))
dt

= Qin(t)Cin(t) (6)

Combining Equations (5) and (6),

dCA(t)
dt

=
Qin(t)

V0A+Qin(t)t
(−CA(t) + Cin(t)) (7)

The solution for Equation (7), assuming that Qin(t) = Qin, is given as

CA(t) =
C0AV0A+QinCin(t)

V0A+Qint
(8)

Compartments B and C have no concentration because they were both empty in this
condition, and no more water was entering them during Compartment A’s filling stage.

Configuration 2: Initial Level of Water in Compartment B and Inlet of Compartment A

Initially, Compartment A was full (VA = V0A). The water level in Compartment B had
a volume of V0B and a concentration of C0B. Water entered Compartment A at a constant
flow rate, Qin(t), and an inlet concentration of Cin(t). Then, it flowed into Compartment
B at the same rate as before, with a new fluoride concentration, (8), formed by mixing in
Compartment A. Figure 3b shows a graphical representation.

Case 2: Compartment A (Figure 3b).
In this instance, Compartment A was initially full. Water flowed into and out of the

compartment at the same rate Qin(t). The volume remained constant during the filling stage.

dVA(t)
dt

= Qin(t) − Qout(t) = 0 (9)

d(C A(t)VA(t))
dt

= Qin(t)Cin(t) − Qout(t)CA(t) (10)

Combining Equations (9) and (10),

dCA(t)
dt

=
Qin(t)

VA
(−CA(t) + Cin(t)) (11)

The analytical solution of Equation (11), assuming that Qin(t) = Qin, is given as

CA(t) = Cin(t) + exp
(
−Qin

VA

)
(C 0A− Cin(t)) (12)

Case 3: Compartment B (Figure 3b).
Water entered Compartment B from Compartment A, with the same flow, Qin(t), and

a concentration provided by the analytical solution in (12) (CA(t) = Cin(t) + exp
(
−Qin

VA

)
(C 0A−Cin(t)). The water level in Compartment B had a volume of V0B and a concentration
of C0B. A graphical representation is given in Figure 3b.

dVB(t)
dt

= Qin(t) (13)

d(C B(t)VB(t))
dt

= Qin(t)Cin(t) = Qin(t)(C in(t) + exp
(
−Qin

VA

)
(C 0A−Cin(t)) (14)
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Combining Equations (13) and (14),

dCB(t)
dt

=
Qin(t)

V0B + Qin(t)t

(
−CB(t) + (C in(t) + exp

(
−Qin(t)

VA

)
(C 0A − Cin(t))

)
(15)

The analytical solution of Equation (15), assuming that Qin(t) = Qin, is

CB(t) =
(C in(t)Qin − VA exp

(
−Qint

VA

)
(C 0A− Cin(t))

V0B + Qint
+

V0BC0B − Cin(t)VA + C0AVA

V0B + Qint
(16)

Configuration 3: Initial Level of Water in Compartment C and Inlet of Compartment A

The tank had three compartments, each with fixed volumes of VA, VB, and VC, respec-
tively. The initial water level in Compartment C had a volume of V0C and a concentration
of C0C. Water was assumed to enter Compartment A with a constant flow rate, Qin(t), and
a fluoride concentration of Cin(t) and flowed into Compartment B and Compartment C
with the same flow rate, Qin(t). A graphical representation is shown in Figure 3c.

Case 4: Compartment A (Figure 3c).
This case was the same situation as Case 2; Compartment A was full, and water

entered Compartment A. The only difference was that the water level was initially in
Compartment C, which did not affect the mixing mechanism in Compartment A. The mass
balance equations and solution were the same. The analytical solution was given in (12),
CA(t) = Cin(t) + exp−

(
Qin
VA

)
(C 0A− Cin(t)).

Case 5: Compartment B (Figure 3c).
Both Compartments A and B were initially full (VA = V0A, VB = V0B). The volume of

water in Compartments A and B remained constant during the filling stage of Compart-
ment C. The water level in Compartment C had a volume of V0C and a concentration of
C0C. New water flowed into Compartment A with a Cin(t) inlet concentration and Qin(t)
flow. It flowed to Compartment B with a new chlorine concentration, given in (12), and to
Compartment C with a new chlorine concentration (16), formed by mixing in Compart-
ment B, all at the same flow rate (Qin(t)). Figure 3c depicts a graphical representation of
the layout.

dVB(t)
dt

= Qin(t) − Qout(t)= 0 (17)

d(C B(t)VB(t))
dt

= Qin(t)Cin(t) − QinCB(t) (18)

Combining Equations (17) and (18)

dCB(t)
dt

=
Qin(t)

VB

(
−CB(t) + Cin(t) + exp

(
−Qin

VA

)
(C0A − Cin(t))

)
(19)

The analytical solution of Equation (19), assuming that Qin(t) = Qin, is

CB(t) =


exp

((
−Qint

VB

))(
Cin(t) exp

(
Qint
VB

))
+

((C 0A − Cin(t))VA)(exp
(
−Qint

VA

)
exp(Qint

VB
))

VA−VB
−

exp
((

−Qint
VB

))(
C0AVA − C0BVA + C0BVB − Cin(t)VB

VA − VB

)
 (20)

Case 6: Compartment C (Figure 3c).
Initially, the water level was in Compartment C with a volume of V0C and a concen-

tration of C0C. Then, water flowed to Compartment C from Compartment B at a constant
flow rate of Qin(t) and the fluoride concentration given in (20). A graphical representation
is shown in Figure 3c.

dVc(t)
dt

= Qin(t) (21)
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d(C c(t)Vc(t))
dt

= Qin(t)


exp

(
−
(

Qint
VB

))(
Cin(t) exp

(
Qint
VB

))
+

((C 0A − Cin(t))VA)(exp
(
−Qint

VA

)
exp(Qint

VB
))

VA−VB
−

exp
(
−
(

Qint
VB

))(
C0AVA − C0BVA + C0BVB − Cin(t)VB

VA − VB

)
 (22)

Combining Equations (21) and (22),

dCc(t)
dt

=
Qin(t)

V0c + Qin(t)t


−Cc(t) + exp

((
−Qint

VB

))(
Cin(t) exp

(
Qint
VB

))
+

(C0A − Cin(t)VA)(exp
(
−Qint

VA

)
exp(Qint

VB
))

VA−VB
+

exp
((

−Qint
VB

))(
C0AVA − C0BVA + C0BVB − Cin(t)VB

VA − VB

)
 (23)

The analytical solution for Equation (23), assuming that Qin(t) = Qin, is

Cc(t) =


t(Cin(t)QinVA − Cin(t)QinVB)

(V0c + Qint)(VA − VB)
+

exp(− Qint
VA

)(C 0A(VA)
2 − Cin(t)(VA)

2) + VBexp(− Qint
VB

)(C 0AVA − C0AVB + C0BVB − Cin(t)VB

)
(V0c + Qint)(VA − VB)

+

(V 0c(C 0c − (V B(C 0AVA − C0BVA + C0BVB − Cin(t)VB) − C0A(VA)
2 + Cin(t)(VA)

2)/(V 0c(VA − VB))))
(V0c + Qint)

 (24)

Configuration 4: Initial Level of Water in Compartment A and Inlet of Compartment B

The tank was divided into three compartments with fixed volumes of VA, VB, and
VC. Water was assumed to enter the tank with a constant flow rate of Qin(t) and fluoride
concentration of Cin(t) from Compartment B. Thus, the tank had an initial water volume
of V0A in Compartment A, with an initial fluoride concentration of C0A. A graphical
representation is provided in Figure 4a.

Water 2021, 13, x FOR PEER REVIEW 10 of 29 
 

 

 
Figure 4. A three-compartment model with an inlet point in Compartment B. (a) Initial water level in Compartment A, (b) 
initial water level in Compartment B, and (c) initial water level in Compartment C. 

Case 7: Compartment A (Figure 4a). 
This case was almost the same situation as Case 1, the only difference being that wa-

ter with a flow rate of Qin(t) and an inlet concentration of Cin(t) entered Compartment A 
from Compartment B. The analytical solution for Compartment A in Equation (8) is pro-
vided by the following: 

CA(t)= 
C0AV0A+QinCin(t)

V0A+Qint  (25)

Configuration 5: Initial Level of Water in Compartment B and Inlet of  
Compartment B 

The tank was divided into three compartments with fixed volumes of VA, VB, and VC. 
Initially, the water level was in Compartment B with a volume of V0B and a concentration 
of C0B. Water entered Compartment B with a constant flow of Qin(t) and a fluoride concen-
tration of Cin(t), as shown in Figure 4b. 

Case 8: Compartment A (Figure 4b). 
During the filling stage of Compartment B, Compartment A was a dead zone. It did 

not interact with new water that came from outside through Compartment B. Therefore, 
the concentration remained constant for Compartment A. 

Case 9: Compartment B (Figure 4b). 
Initially, the water level in Compartment B had a volume of V0B and a concentration 

of C0B. Water entered Compartment B with a constant flow rate of Qin(t) and a fluoride 
concentration of Cin(t), as shown in Figure 4b. 

dVB(t)
dt

 =  Qin(t) (26)

d(CB(t)VB(t)) 
dt  =  Qin(t)Cin(t) (27)

Combining Equations (26) and (27), 

dCB(t)
dt =

Qin(t)
V0B+Qin(t)t

(-CB(t)+ Cin(t)) (28)

The analytical solution of Equation (28), assuming that Qin(t) = Qin, is 

CB(t)= C0BV0B+QinCin(t)
V0B+Qint  (29)

  

Figure 4. A three-compartment model with an inlet point in Compartment B. (a) Initial water level in Compartment A,
(b) initial water level in Compartment B, and (c) initial water level in Compartment C.

Case 7: Compartment A (Figure 4a).
This case was almost the same situation as Case 1, the only difference being that water

with a flow rate of Qin(t) and an inlet concentration of Cin(t) entered Compartment A from
Compartment B. The analytical solution for Compartment A in Equation (8) is provided by
the following:

CA(t) =
C0AV0A + QinCin(t)

V0A + Qint
(25)

Configuration 5: Initial Level of Water in Compartment B and Inlet of Compartment B

The tank was divided into three compartments with fixed volumes of VA, VB, and
VC. Initially, the water level was in Compartment B with a volume of V0B and a concen-
tration of C0B. Water entered Compartment B with a constant flow of Qin(t) and a fluoride
concentration of Cin(t), as shown in Figure 4b.

Case 8: Compartment A (Figure 4b).
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During the filling stage of Compartment B, Compartment A was a dead zone. It did
not interact with new water that came from outside through Compartment B. Therefore,
the concentration remained constant for Compartment A.

Case 9: Compartment B (Figure 4b).
Initially, the water level in Compartment B had a volume of V0B and a concentration

of C0B. Water entered Compartment B with a constant flow rate of Qin(t) and a fluoride
concentration of Cin(t), as shown in Figure 4b.

dVB(t)
dt

= Qin(t) (26)

d(C B(t)VB(t))
dt

= Qin(t)Cin(t) (27)

Combining Equations (26) and (27),

dCB(t)
dt

=
Qin(t)

V0B + Qin(t)t
(−CB(t) + Cin(t)) (28)

The analytical solution of Equation (28), assuming that Qin(t) = Qin, is

CB(t) =
C0BV0B + QinCin(t)

V0B + Qint
(29)

Configuration 6: Initial Level of Water in Compartment C and Inlet of Compartment B

The tank was divided into three compartments with fixed volumes of VA, VB, and VC.
Initially, the water level was in Compartment C with a volume of V0C and a concentration
of C0C. Then, water was assumed to enter Compartment B with a constant flow rate of
Qin(t) and a fluoride concentration of Cin(t), and left with the same flow, Qin(t).

Case 10: Compartment A (Figure 4c).
There was no mixing since no water entered Compartment A. Therefore, during the

filling phase, the concentration remained the same as C0A.
Case 11: Compartment B (Figure 4c).
In this instance, Compartment B was initially full. Water flowed into and out of the

compartment at the same rate, Qin(t). The volume remained constant during the filling stage.

dVB(t)
dt

= Qin(t)− Qout(t) = 0 (30)

d(C B(t)VB(t))
dt

= Qin(t)Cin(t)− QinCB(t) (31)

Combining Equations (30) and (31),

dCB(t)
dt

=
Qin(t)

VB
(−CB(t) + Cin(t)) (32)

The analytical solution of Equation (32), assuming that Qin(t) = Qin, is

CB(t) = Cin(t) + exp
(
−Qin

VB

)
(C 0B − Cin(t)

)
(33)

Case 12: Compartment C (Figure 4c).
Initially, the water level was in Compartment C with a volume of V0C and a concen-

tration of C0C. Water entered Compartment B with at a constant flow rate of Qin(t) and an
inlet fluoride concentration of Cin(t). It flowed with the same flow rate, Qin(t), and a con-
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centration of the analytical solution (33) into Compartment C. A graphical representation
is given in Figure 4c.

dVC(t)
dt

= Qin(t) (34)

d(C C(t)VC(t))
dt

= Qin(t)Cin(t) (35)

Combining Equations (34) and (35),

dCC(t)
dt

=
Qin(t)

V0c + Qin(t)t

(
−CC(t) + Cin(t) + exp

(
−Qin

VB

)
(C 0B − Cin(t))

)
(36)

The analytical solution for Equation (36) is

CC(t) =
(C in(t)Qin − VB exp

(
−Qint

VB

)
(C 0B − Cin(t))

V0C + Qint
+

V0CC0C − Cin(t)VB + C0AVA

V0B + Qint
(37)

Configuration 7: Initial Level of Water in Compartment A and Inlet of Compartment C

The tank was divided into three compartments with fixed volumes of VA, VB, and
VC. Water was assumed to enter the tank with a constant flow rate of Qin(t) and a chlorine
concentration of Cin(t) from Compartment C. Thus, the tank had an initial water volume
of V0A in Compartment A with an initial fluoride concentration of C0A. A graphical
representation is given in Figure 5a.
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Case 13: Compartment A (Figure 5a).
This case was similar to Cases 1 and 7. Thus, the analytical solution of Compartment

A is Equation (8).

Configuration 8: Initial Level of Water in Compartment B and Inlet of Compartment C

The tank was divided into three compartments with fixed volumes of VA, VB, and VC.
Water entered the tank with a constant flow rate of Qin(t) and chlorine concentration of
Cin(t) from Compartment C. The tank had an initial water volume of V0B in Compartment
B with an initial fluoride concentration of C0B. A graphical representation is shown in
Figure 5b.

Case 14: Compartment A (Figure 5b).
Since there was no mixing of the concentration in Compartment A, it remained the

same as C0A.
Case 15: Compartment B (Figure 5b).
This case was almost the same as Case 9. The only difference was that A water with

flow Cin(t) and Qin(t) enters Compartment B from Compartment C. The analytical solution
is (29), CB(t) =

C0BV0B + QinCin(t)
V0B + Qint .
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Configuration 9: Initial Level of Water in Compartment C and Inlet of Compartment C

The tank was divided into three compartments with fixed volumes of VA, VB, and
VC. Water was assumed to enter the tank with a constant flow rate of Qin(t) and chlorine
concentration of Cin(t) from Compartment C. The tank had an initial water volume of V0C
in Compartment C with an initial chlorine concentration of C0C. A graphical representation
is shown in Figure 5c.

Case 16: Compartment A (Figure 5c).
Since no water flowed into Compartment A, there was no mixing, and the concentra-

tion remained constant.
Case 17: Compartment B (Figure 5c).
There was no mixing because no water went into Compartment B during this filling

stage. Therefore, the concentration remained constant, at C0B.
Case 18: Compartment C (Figure 5c).

dVc(t)
dt

= Qin(t) (38)

d(C c(t)Vc(t))
dt

= Qin(t)Cin(t) (39)

Combining Equations (38) and (39),

dCc(t)
dt

=
Qin(t)

V0c + Qin(t)t
(−Cc(t) + Cin(t)) (40)

The analytical solution of Equation (40), assuming that Qin(t) = Qin, is

Cc(t) =
C0cV0c + QinCin(t)

V0c + Qint
(41)

The analytical solutions discovered are summarized in Table 2. It replaces the case
numbers in Table 1 with an equation number giving the analytical answer for the specific
situation.

Table 2. Summary of the analytical solution during the filling stage.

Inlet Point
Level of Water Compartment A Compartment B Compartment C

Compartment A
A B C A B C A B C

(8) 0 0 (12) (16) 0 (12) (20) (24)

Compartment B
A B C A B C A B C

(8) 0 0 C0A (29) 0 C0A (33) (37)

Compartment C
A B C A B C A B C

(8) 0 0 C0A (29) 0 C0A C0B (41)

3.1.2. Outflow Conditions

The outlet was located at the bottom of the tank, and the starting water level could
come from any of the three compartments. As a result, there were three possible config-
urations. Unless water with a different concentration flowed from the top compartment,
the concentration of any compartment remained constant during the draining process. For
example, in Compartment A of the first design depicted in Figure 6a, when the outlet was
opened, the water simply flowed without mixing. Therefore, the concentration did not
change. Table 3 shows the lists of cases for outflow conditions.
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Table 3. List of cases for each compartment’s draining process, with varying inlets and inlet concentrations.

Inlet Point
Level of Water Compartment A Compartment B Compartment C

Compartment A
A B C A B C A B C

Case 1 0 0 Case 2 Case 3 0 Case 4 Case 5 Case 6

Configuration 1: Outlet Point of Compartment A and Initial Level of the Water in
Compartment A

The tank was divided into three compartments with fixed volumes of VA, VB, and
VC. Water was assumed to flow out from the tank with a constant flow rate of Qout(t)
from Compartment A. Thus, the tank had an initial water volume of V0A in Compartment
A with an initial chlorine concentration of C0A. A graphical representation is shown in
Figure 6a.

Case 1: Compartment A (Figure 6a).
Because there was no water mixing, the water concentration remained constant at C0A

during the draining stage.

Configuration 2: Outlet Point of Compartment A and Initial Level of the Water in
Compartment B

The tank was divided into three compartments with fixed volumes of VA, VB, and
VC. Water was assumed to flow out from the tank with a constant flow rate of Qout(t)
from Compartment A. The tank had an initial water volume of V0B in Compartment B
with an initial chlorine concentration of C0B. Water flowed with the same Qout(t) as in
Compartment A. A graphical representation is shown in Figure 6b.

Case 2: Compartment B (Figure 6b).
The water simply flowed without any mixing. The concentration remained constant

for Compartment B as C0B.
The tank had an initial water volume of V0B in Compartment B with an initial chlorine

concentration of C0B. During Compartment B’s draining stage, the volume of Compartment
A remained constant since it was full. Water was assumed to enter Compartment A from
Compartment B, with a constant flow rate of Qout(t) with a concentration of C0B, and flow
out of the tank with the same flow rate, Qout(t). A graphical representation is shown in
Figure 6b.

dVA(t)
dt

= Qout(t) − Qout(t)= 0 (42)

d(C A(t)VA(t))
dt

= Qout(t)CB(t)− QoutCA(t) (43)
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Combining Equations (41) and (42),

dCA(t)
dt

=
Qout(t)

VA
(−CA(t) + CB(t)) (44)

The analytical solution of Equation (43), assuming that Qout(t) = Qout, is

CA(t) = CB(t) + exp
(
−Qout

VA

)
(C 0A− CB(t)) (45)

Configuration 3: Outlet Point in Compartment A and Initial Level of the Water in
Compartment C

The tank was divided into three compartments with fixed volumes of VA, VB, and
VC. Water was assumed to leave from the tank with a constant flow rate of Qout(t) from
Compartment A. Thus, the tank had an initial water volume of V0C in Compartment
C with an initial chlorine concentration of C0C. Water flowed with the same Qout(t) to
Compartments A and B. A graphical representation is shown in Figure 6c.

Case 3: Compartment C (Figure 6C).
Water from Compartment C exited without mixing during a specific delta t. As a

result, the concentration remained the same as C0C. Water with a concentration of C0c
flowed into Compartment B during this period.

Case 4: Compartment B (Figure 6C).
In Compartment C, the tank had an initial water volume of V0C with an initial chlorine

concentration of C0B. Because Compartment B was filled, the volume of Compartment B
remained constant during the draining step of Compartment C. Water with a concentration
of C0C was assumed to enter Compartment B from Compartment C of the tank at a constant
flow rate of Qout(t).

dVB(t)
dt

= Qout(t) − Qout(t)= 0 (46)

d(C B(t)VB(t))
dt

= Qout(t)CC(t)− QoutCB(t) (47)

Combining Equations (45) and (46)

dCB(t)
dt

=
Qout(t)

VB
(−Cc(t) + CB(t)) (48)

The analytical solution of Equation (47), assuming that Qout(t) = Qout, is

CB(t) = Cc(t) + exp
(
−Qout

VB

)
(C 0B − CC(t)) (49)

Case 5: Compartment A (Figure 6c).
The tank had an initial water volume of V0c in Compartment C with an initial chlorine

concentration of C0C. Water was assumed to enter Compartment B from Compartment C of
the tank with a constant flow rate of Qout(t) and concentration of C0c at this specific delta T. Wa-
ter with the same flow but a concentration of (CB(t) = CC(t) + exp

(
−Qout(t)

VB

)
(C 0B−CC(t )))

entered Compartment A. Because Compartment A was filled, the volume of Compartment
B remained constant during the draining step of Compartment C. A graphical representa-
tion is shown in Figure 5c:

dVA(t)
dt

= Qout(t)− Qout(t)= 0 (50)

d(C A(t)VA(t))
dt

= Qout(t)CB(t)− CA(t) (51)
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Combining Equations (49) and (50),

dCA(t)
dt

=
Qout(t)

VA

(
−CA(t) + CC(t) + exp

(
−Qout

VB

)
(C 0B − CC(t)))

)
(52)

The analytical solution of Equation (51), assuming that Qout(t) = Qout, is

CA(t) = exp
(
−
(

Qoutt
VA

))(
CC(t) exp

(
Qoutt
VA

))
+

(C0BVB − C0c(t)VB)(exp
(
−Qoutt

VB

)
exp(Qoutt

VA
))

VB − VA

+ exp
(
−
(

Qoutt
VA

))(
C0BVB − C0AVB + C0AVA − C0cVA

VB − VA

) (53)

Table 4 presents the solutions. It replaces the case numbers in Table 3 with an equation
number giving the analytical answer for the specific situation.

Table 4. Summary of the analytical solutions during the draining stage.

Inlet Point
Level of Water Compartment A Compartment B Compartment C

Compartment A
A B C A B C A B C

C0A 0 0 (45) C0B 0 (53) (49) C0C

3.2. Non-Conservative Material

The mixing behaviors inside the tank were depicted using a two-compartment model.
The tanks were classic inflow/outflow tanks, which are filled or drained according to
need rather than simultaneously. The entrance can come from any compartment, and the
outlet is at the bottom. It was assumed that the material was non-conservative and had
a first-order decay constant of k. The general formulas, which describe the change in the
concentration of chlorine are as follows:

dV(t)
dt

= Qin(t)− Qout(t) (54)

d(C(t)V(t))
dt

= Qin(t)Cin(t)− QoutC(t)−kV(t)C(t) (55)

or, equivalently,

V(t)
dC(t)

dt
+C(t)

dV(t)
dt

= Qin(t)Cin(t)− QoutC(t)−kV(t)C(t) (56)

Inflow Conditions

Using the same analysis as before, the entrance point and the initial water level could
be in any of the two compartments for the filling stage. Accordingly, there were four
configurations. Table 5 lists all the cases for the inflow stages.

Table 5. Map of the cases for filling each compartment, with different inlets and initial concentrations.

Inlet Point
Level of Water Compartment A Compartment B

Compartment A
A B A B

Case 1 0 Case 2 Case 3

Compartment B
A B A B

Case 4 0 Case 5 Case 6

Configuration 1: Initial Level of Water in Compartment A and the Inlet of Compartment A

The tank was divided into three compartments with fixed volumes of VA and VB.
Water was assumed to enter the tank with a constant flow rate of Qin(t) and chlorine
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concentration of Cin(t). Thus, the tank had an initial water volume of V0A in Compartment
A with an initial chlorine concentration of C0A with a decay constant K. Figure 7a shows a
graphical representation.
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Case 1: Compartment A (Figure 7a).

dVA(t)
dt

= Qin(t) (57)

d(C A(t)VA(t))
dt

= Qin(t)Cin(t)− kVA(t)CA(t) (58)

Combining Equations (57) and (58),

dCA(t)
dt

=
Qin(t)

V0A + Qin(t)t
(−CA(t) + Cin(t))−kCA(t)) (59)

The analytical solution of Equation (59), assuming that Qin(t) = Qin, is

CA(t) =
C0AV0A exp(−kt)

V0A + Qint
+

Cin(t)Qin − Cin(t)Qinexp(−kt)
k(V 0A + Qin t)

(60)

Configuration 2: Initial Level of Water in Compartment B, and the Inlet of Compartment A

The tank was divided into two compartments with fixed volumes of VA and VB. Water
was assumed to enter the tank with a constant flow rate of Qin(t) and chlorine concentration
of Cin(t). The tank had an initial water volume of V0B in Compartment B with an initial
chlorine concentration of C0B with a decay constant K. Compartment A was full. Figure 7b
shows a graphical representation.

Case 2: Compartment A (Figure 7b).

dVA(t)
dt

= Qin(t) − Qout(t)= 0 (61)

d(C A(t)VA(t))
dt

= Qin(t)Cin(t)− QinCA(t)−kVA(t)CA(t) (62)

Combining Equations (61) and (62),

dCA(t)
dt

=
Qin(t)

VA
(−CA(t) + Cin(t))−kVA(t)CA(t) (63)
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The analytical solution of Equation (63), assuming that Qin(t) = Qin, is

CA(t)=
(C in(t)Qin+ exp(−

(
t(Qin+kVA)

VA

)
(C0ACin(t) − Cin(t)Qin + C0AkVA)

)
Qin + kVA

(64)

Case 3: Compartment B (Figure 7b).
Initially, the water level in Compartment B had a volume of V0B and a concentration

of C0B. Water was assumed to enter Compartment A with a constant flow rate of Qin(t)
and chlorine concentration of Cin(t), which has a decay constant K and leaves with the
same flow, Qin(t), and a concentration of the analytical solution of Equation (48) into
Compartment B. A graphical representation is provided in Figure 7b.

dVB(t)
dt

= Qin(t) (65)

d(C B(t)VB(t))
dt

= Qin(t)Cin(t)− QoutCB(t)−kVB(t) CB(t) (66)

Combining Equations (65) and (66),

dCB(t)
dt

=
Qin(t)

V0B + Qin(t)t
(−CB(t ) +

(C in(t)Qin+ exp
(
−
(

t(Qin + kVA)
VA

)
(C0ACin(t)− Cin(t)Qin + C0AkVA)

)
Qin + kVA

 (67)

The analytical solution of Equation (67), assuming that Qin(t) = Qin, is

CB(t) = (
V0B exp(−kt)

(C 0B + VA(C0AQin − Cin(t)Qin + C0AkVA) − Cin(t)Qin
2

k
V0B + Qint

V0B + Qint

+
exp(−kt)(V A exp

(
−Qint

VA

)
(C0AQin − Cin(t)Qin + C0AkVA)

(Qin + kVA)(V 0B + Qin t) +

(
Cin(t)Qin

2 exp(kt)
k

)
(Qin + kVA)(V 0B + Qin t) )

(68)

Configuration 3: Initial Level of Water in Compartment A and the Inlet of Compartment B

The tank was divided into two compartments with fixed volumes of VA and VB.
Water was assumed to enter the tank with a constant flow rate of Qin(t) and chlorine
concentration of Cin(t) from Compartment B. The tank had an initial water volume of V0A
in Compartment A with an initial chlorine concentration of C0A with a decay constant K.
Figure 8a shows a graphical representation.
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Case 4: Compartment A (Figure 8a).
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This was almost the same as Case 1, with the only difference being the water inlet
location. The analytical solution is given in Equation (60).

Configuration 4: Initial Level of Water in Compartment B and the Inlet of Compartment B

The tank was divided into two compartments with fixed volumes of VA and VB.
Water was assumed to enter the tank with a constant flow rate of Qin(t) and chlorine
concentration of Cin(t) from Compartment B. Thus, the tank had an initial water volume of
V0B in Compartment B with an initial chlorine concentration of C0B with a decay constant
K. A graphical representation is shown in Figure 8b.

Case 5: Compartment A (Figure 8b).
The water in the compartment is not interacting with any new water that comes from

outside during the filling stage.

dVA(t)
dt

= Qin(t) − Qout(t)= 0 (69)

d(C A(t)VA(t))
dt

= Qin(t)Cin(t)− QoutCA(t) − k(C A(t)VA(t) (70)

Combining Equations (69) and (70),

dCA(t)
dt

= −kCA(t) (71)

The solution of Equation (71) is CA(t) = C0A exp(−kt).
Case 6: Compartment B (Figure 8b).
Initially, the water level was in Compartment B with a volume of V0B and concentra-

tion of C0B with a decay constant K. water was assumed to enter Compartment B with a
constant flow rate of Qin(t) and chlorine concentration of Cin(t) as shown in Figure 8b:

dVB(t)
dt

= Qin(t) (72)

d(C B(t)VB(t))
dt

= Qin(t)Cin(t) − kVB(t)CB(t) (73)

Combining Equations (72) and (73),

dCB(t)
dt

=
Qin(t)

V0B + Qin(t)t
(−CB(t) + Cin(t))−kCB(t) (74)

The analytical solution of Equation (74), assuming that Qin(t) = Qin, is

CB(t) =
C0BV0B exp(−kt)

V0B + Qint
+

Cin(t)Qin − Cin(t)Qinexp(−kt)
k(V 0B + Qin t)

(75)

Table 6 refers the summary of the analytical solutions.

Table 6. Summary of the analytical solution during the filling stage.

Inlet Point
Level of Water Compartment A Compartment B

Compartment A
A B A B

(60) 0 (64) (68)

Compartment B
A B A B

(60) 0 C0Aexp(−kt) (75)
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3.3. Outflow Condition

The draining procedure was also subjected to the same scrutiny as the conservative
procedure. Suppose there is no mixing in the compartment when the outlet is opened;
unlike the conservative ones, the concentration changes due to the decay constant. There
are two configurations that can be achieved by changing the initial water level. Table 7
shows the list of the cases.

Table 7. Map of the cases for draining of each compartment with different inlets and initial concen-
trations.

Outlet Point
Level of Water Compartment A Compartment B

Compartment A
A B A B

Case 1 0 Case 2 Case 3

3.3.1. Configuration 1: Initial Level of Water in Compartment A and the Outlet of
Compartment A

The tank was divided into two compartments with fixed volumes of VA and VB.
Water was assumed to leave from the tank with a constant flow rate of Qout(t) from
Compartment A. The tank had an initial water volume of V0A in Compartment A with an
initial chlorine concentration of C0B and a decay constant K. Water flows with the same
Qout(t) as Compartment A. A graphical representation is shown in Figure 9a.
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point in Compartment A and initial level of water in Compartment B.

Case 1: Compartment A (Figure 9a).

dVA(t)
dt

= −Qout(t) (76)

d(C A(t)VA(t))
dt

= −QoutCA(t)−kCA(t)VA(t) (77)

Combining Equations (76) and (77),

dCA(t)
dt

= −kCA(t) (78)

The solution of Equation (78) is

CA(t) = C0A exp(−kt) (79)
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3.3.2. Configuration 2: Initial Level of Water in Compartment B and the Outlet of
Compartment A

The tank was divided into two compartments with fixed volumes of VA and VB. Water
was assumed to leave from the tank at a constant flow rate of Qout(t) from Compartment
A. The tank had an initial water volume of V0B in Compartment B with an initial chlo-
rine concentration of C0B, and a decay constant K. Water flows with the same Qout(t) to
Compartment A. A graphical representation is shown in Figure 9b.

Case 3: Compartment B (Figure 9b):

dVB(t)
dt

= −Qout(t) (80)

d(CB(t)VB(t))
dt

= −QoutCB(t)− kCB(t)VB(t) (81)

Combining Equations (80) and (81),

dCB(t)
dt

= −kCB(t) (82)

The solution of Equation (82) is

CB(t) = C0B exp(−kt) (83)

Case 2: Compartment A (Figure 9b).
Water was assumed to leave from the tank with a constant flow rate of Qout(t) from

Compartment A. The tank had an initial water volume of V0B in Compartment B with
an initial chlorine concentration of C0B, and a decay constant K. Water flows with the
same Qout(t) and a concentration of C0B exp(−kt) to Compartment A. During this time,
Compartment A was full. Figure 6b gives a graphical representation.

dVA(t)
dt

= Qin(t) − Qout(t)= 0 (84)

d(C A(t)VA(t))
dt

= Qout(t)C0Bexp(−kt) − QoutCA(t)−kCA(t)VA (85)

Combining Equations (84) and (85),

dCA(t)
dt

=
Qout(t)

VA
(−CA(t) + C0Bexp(−kt))−kCA(t) (86)

The solution of Equation (86), assuming that Qout(t) = Qout, is

CA(t) = exp
(
− (t(Qout + kVA)

VA

)
(C0A − C0B + C0B exp

((
Qoutt
VA

))
(87)

Table 8 summarize the analytical solutions.

Table 8. Summary of the analytical solutions during the draining stage.

Outlet Point
Level of Water Compartment A Compartment B

Compartment A
A B A B

(79) 0 (87) (83)

4. Example Application

For both the filling and draining stages, full analytical solutions were developed,
taking into account all the combinations and arrangements for both conservative and non-
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conservative materials. A simulation can be run to calculate the volume and concentration
at any time in a specified compartment by providing all of the necessary input variables. A
user enters the following as inputs:

− The fixed volumes of Compartments A, B, C; a calibration was used to choose the
volume of each compartment.

− The delta t and total simulation time T.
− The inlet points.
− The initial levels and volumes of water and the initial concentrations.
− The inflow Qin(t) with its Cin(t) and outflow Qout(t) for different delta t (during total

time T).

Using the appropriate equation, concentrations were calculated at any time for each
compartment. In addition, the results were validated by comparing them with numeri-
cal results.

The following are assumed to be true for the flow.

− Constant for specific delta t.
− It can be either filling (Qout = 0) or draining (Qin = 0) at any time.
− It was given for the total simulation time T.

When it was filling (Qin > 0), there was a Cin(t) (inlet concentration).
A sample of theoretical data and field data from [11] were taken to test the model for

both conservative and non-conservative constituents.

4.1. Conservative Material

A tank was divided into three compartments and had volumes of 500 m3, 400 m3, and
600 m3, starting from the bottom. The simulation was carried out for a total of 10 h, with
delta t (∆t) being 1 h. The flow at each hour is given in Table 9.

Table 9. Flow, Qin(t) [m3/h], and Qout(t) [m3/h] at each hour.

Time (h) 1 2 3 4 5 6 7 8 9 10

Qin(t) [m3/h] 200 0 120 90 250 0 0 120 0 200

Qout(t) [m3/h] 0 180 0 0 0 100 150 0 180 0

Cin [mg/L] 25 0 25 25 25 0 25 25 0 25

Two arrangements (initial levels of water concentrations) are presented in Figure 10.
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Result and Discussion

Using the appropriate equations, the volumes and concentrations were calculated at
each time step. The volume and concentration graphs are presented as follows.
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Figure 11 shows the volume of each compartment as a function of time. In (a), at first,
Compartment A contained 50 m3 of water. It rose when there was inflow and fell when
there was outflow, according to the flow tables. Water flowed into Compartment B when
it exceeded its capacity volume of 500 m3, increasing the volume of Compartment B. The
water level did not reach Compartment C in this flow example. As a result, the volume of
Compartment C was nil. (b) Initially, Compartment A contained 500 m3 of water (maximum
capacity), while Compartment B had 50 m3 of water. The volume in Compartment A
remained constant according to the flow tables, while the volume in Compartment B
increased when there was inflow and reduced when there was outflow. Water flowed into
Compartment C when it exceeded its capacity volume of 300 m3, increasing the volume of
Compartment C.
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Figure 11. Volume (m3) vs. time (h) for Compartments A, B, C in Figure 10. (a) Both inlet and initial level of water of
Compartment A; (b) inlet and initial level of water of Compartment B, where VA(t) = volume of the water for Compartment
A, VB(t) = volume of the water for Compartment B, and VC(t) = volume of the water for Compartment C.

Figure 12 shows the fluoride concentration as a function of time. Because the material
was conservative, the concentration inside each compartment rose or fell with time to
approach the inlet concentration in both arrangements. Compartment A had a 35 mg/L
concentration in (a). It lowered over time since it was more than the inlet concentration
(25 mg/L). Because there was no water in Compartments B and C, the concentrations
were zero. When water entered Compartment B, the concentration instantly rose and
gradually approached the input concentration until it reached zero, when the water level
returned to Compartment A. The water level did not reach Compartment C in these
specific situations. As a result, the concentration always stayed zero. For the second
configuration (b), Compartments A and B had 35 mg/L concentrations at first. Because
the entrance came from Compartment B, in the first hour of filling, mixing occurred only
in Compartment B. As a result, although Compartment B’s concentration decreased to
approach the inflow concentration, Compartment A’s concentration remained unchanged.
Whenever Compartment B was draining, water with a certain concentration flowed into
Compartment A. The concentration in Compartment A lowered to maintain equilibrium.
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A, CB(t)= concentration of the water for Compartment B, CC(t) = concentration of the water for Compartment C.

Since the water level reached Compartment C in the fourth hour, the concentration of
the water increased rapidly.

4.2. Non-Conservative Material

A tank was divided into two compartments and had volumes of 500 m3 and 650 m3,
starting from the bottom. The simulation was carried out for a total of 10 h, with delta t (∆t)
at 1 h. The flow rate at each hour is provided in Table 9. The decay constant K was taken as
0.5. Two arrangements (initial levels of water and initial concentrations) are presented in
Figure 13.
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Figure 13. Different arrangement of initial conditions. (a) The inlet and initial level of water in Compartment A; (b) inlet
point and initial level in Compartment B.

Results and Discussion

Using the appropriate equations, the volume and concentrations were calculated at
each time step. The volume and concentration graphs are presented as follows.

Figure 14 shows the volume of each compartment as a function of time. (a) At first,
Compartment A contained 50 m3 of water. It rose when there was inflow and fell when
there was outflow, according to the flow tables. Water flowed into Compartment B when it
exceeded its capacity volume of 500 m3, increasing the volume of Compartment B. (b) At
first, Compartment A contained 500 m3 of space (their maximum capacity). The volume
of water in Compartment B was 50 m3. The volume in Compartment A was constant,
according to the flow tables. Due to the unique flow arrangement, only Compartment B
experienced a change in volume.
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Figure 14. Volume (m3) vs. time (h) for Compartments A, B of Figure 13a,b, where VA(t) = volume of the water for
Compartment A, VB(t) = volume of the water for Compartment B.

Figure 15 illustrates the graph of concentration as a function of time. (a) Unlike the
conservative material, the concentration changed not only because of mixing, but also as
a result of the effect of decay constant K. Initially, the concentration in Compartment A
was 20 mg/L. The concentration inside the tank began to rise, approaching the higher inlet
concentration of 25mg/L. However, because of the decay constant K, it instantly began to
decline. If new water entered the tank with an inlet concentration that was higher than
the concentration inside the tank, the concentration rose to maintain equilibrium. This
may be seen in the graphs for the second, fourth, seventh, and ninth hours. (b) Initially,
the concentrations in Compartments A and B were the same at 20 mg/L. Due to the
decaying constant and the full initial volume, it began to decline instantly in Compartment
A. In Compartment B, the concentration rose at first due to the higher input concentration
but then fell due to the decaying constant. If new water entered the tank with an inlet
concentration that was higher than the concentration inside the tank, the concentration rose
to maintain equilibrium. This can be seen in the graph for Compartment B in the second,
fourth, seventh, and ninth hours, and Compartment A in the first, fifth, and eighth hours.
The decay constant prevented a full equilibrium like that of the conservative material. For
all non-conservative materials, if the decay constant value k approached zero, the graph
resembles that of a conservative material.
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The above answers were discovered using analytical methods, and the results were
validated by comparing them to numerical finite difference methods. Once the differen-
tial equations were developed, rather than solving them analytically, a numerical finite
difference method was applied to generate the concentration at each time step using the
previous values for both arrangements given in Figures 10a and 13a. Figure 16 shows the
numerical solution.
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where CA(t) = concentration of the water for Compartment A, CB(t) = concentration of the water for Compartment
B, CC(t) = concentration of the water for Compartment C.

The numerical and analytical results for each compartment are nearly identical. Fur-
thermore, if they are plotted on the same graph, they overlap. This is because analytical
solutions are the exact solutions derived from a differential equation with a constant
coefficient and are separable rather than approximation solutions.

4.3. Field Example

To test the model, empirical data was taken from the previous study conducted by [11].
The obtained field data was a part of a large-scale field investigation conducted in [4]. The
concentrations of the tracers were measured at the inlet and outlet of the tank. The research
was carried out in the Cherry Hill Brushy Plains service area, which is virtually exclusively
residential, with single-family homes and apartment/condominium units. The Cherry
Hill pump station pumps water from the Saltonstall system into the service area. The
Brushy Plains tank provides storage inside the Cherry Hill Brushy Plains service region.
The pumps’ operation is dictated by the water level in the Brushy Plains tank, which has a
volume of 3790 m3. The pumps are configured to activate when the water height in the tank
lowers to 17.0 m, and to turn off when the elevation reaches 19.7 m in typical conditions.
The fluoride feed was shut off at the Saltonstall plant, which supplies the system to record
the fluoride residual.

The study in [11] used a three-compartment model, with the bottom and top com-
partments presumed to be dead zones. Only in the middle did the volume shift. This was
relaxed on this model by allowing every compartment to change its volume according
to the flow. After regressing the calculated outcomes against the observed data from
the effluent data and calculating the relevant R-squares, the 30–40–30 arrangement was
discovered to be the best fit [11]. 3030 m3 of water was initially present in the tank. The
fluoride content (conservative species) was 0.95 mg/L at the start. The flows were time
dependent. To fit into the model developed, an average was taken. The input variables
were applied to the model developed. Figure 17 shows the calculated fluoride residuals
with respect to time. A comparison was made with the field results found in the same
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study in Figure 18. The red dots in Figure 18 present some of the results found from the
field measurements.
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Figure 18. Fluoride residuals at the outlet of the Brushy Plains Tank using the model developed and
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The good fit of the model-generated data to the field-measured data for fluoride
supports the use of the compartment models to approximate tank mixing hydrodynamics.
More field data and measurements are needed for more confirmation.

5. Conclusions

For anticipating system reactions and pollutant migration and fate, mathematical
modeling is a useful tool. However, the majority of published model results are based on
the assumption of complete and immediate material mixing. The physical processes that
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describe the complicated internal mixing and flow interchange characteristics that occur
within distribution storage facilities have largely been overlooked.

This study presented a compartment model to characterize mixing behavior inside the
tanks. A governing equation was formulated that was dependent on the inlet point and the
level of water. The differential equations were solved through the analytical method, and
their validity was compared with the results of the numerical solutions. The flows were
traditional inflow/outflow methods where only one of them happens for specific delta t.
Four example applications with two different arrangements were reviewed to apply the
solutions. The solutions fit with the physical assumptions that the concentration inside the
tanks either decreases or increases to approach the concentration that comes; it increased
when the concentration inside the tank was less than the concentration that was coming
and vice versa. Concentration changes happened either because of mixing water with
two different concentrations or if there was a time-dependent inlet concentration. The
analytical solutions were compared to numerical results and no differences were found;
this is because the differential equation is solvable, and an exact solution can be found
without approximation. This model can be incorporated into the optimization problem.
Field data was applied to the model and there was a good fit between the results of the
model and the field measurements.

The substances for the non-conservative material assumed in this paper were used
in only two compartments, which identifies the potential future direction of this work.
Further study can be done on a decaying material by adding compartment numbers. The
model developed here can be incorporated into multi-objective optimization problems
in water distribution system-related problems, such as the least costly design, operation,
water age, and others.
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