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Abstract: This study aims to develop and solve a multi-objective water distribution systems opti-
mization problem incorporating pumps’ optimal scheduling and leakage minimization. An iterative
optimization model was presented for calibrating and computing leakages in water distribution sys-
tems to recognize the critical impact of leakage control on system operation. The multi-dimensional
and nonlinear optimization model, incorporating pump control, consumer demands, storage, and
other water distribution systems’ components, was constructed and was minimized using a multi-
objective genetic algorithm coupled with hydraulic simulations. The model was demonstrated on two
example applications with increasing complexity through base runs and sensitivity analyses. Results
showed that leakage minimization competes against pumping, mainly when significant differences
occur between demands during low and high energy tariffs. Pumping during the periods with high
electricity tariffs (when the demands are high) generated pressure distribution that decreased the
overall leakage related to pump scheduling that replicated the natural inclination to pump as much
as possible at low tariffs (when the demands are low). The optimal fronts were found to be very
sensitive to the leakage exponent value, and changing its value indeed contradicted the balance
between minimizing the leakage and the energy cost significantly. Altogether, the idea presented in
this paper was found capable of facilitating the decision-makers to conveniently select between the
energy-efficient pump scheduling and pump scheduling reflecting minimum leakage based on the
system operator’s preferences. The research also paves the way to rebuild the optimization model by
incorporating water distribution reliability and water quality that, in some cases, may also contradict
the choice between energy cost and leakage minimization.

Keywords: water distribution systems; leakage; pump scheduling; operation; optimization;
EPANET; calibration

1. Introduction

Optimal operation of water distribution systems has been explored intensively in the
last three decades along with the improvements in computational and computing abilities.
Pump scheduling for minimizing operational costs is a non-linear problem which takes
into consideration the water distribution system storage and time-varying electricity tariffs.

The considerable improvement in simulating hydraulic and water quality phenomena
in water distribution systems once EPANET [1] was introduced, along with the computa-
tional increase in efficiency and tools, allowed the extensions of optimal hydraulic problems
to incorporate water quality issues [2,3], leakage [4,5], and reliability [6]. The most com-
mon algorithm involved in solving these problems is a genetic algorithm (GA) [7]. The
GA (heuristic search that mimics the process of natural selection) enables the inclusion
of pumps, control valves, consumer demands, storage, and other aspects for the overall
design/operation of water distribution systems.

Multi-objective optimization could further enhance the system operator to have more
flexibility in the process of decision-making. The minimum operation cost is not always
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the most important goal [8]. Other aspects which involve water quality [6], reliability [9],
and leakage [10] could be taken into consideration. At some instances, those become even
more important than cost (e.g., reliability) or could not be measured by the scale of cost.
A multi-objective framework provides a range of non-dominated solutions which form a
Pareto optimal front [11,12]. These give the operator the ability to select favorable solutions
from multiple choices according to his preferences [13,14].

Background water losses (background leakage) in water distribution networks gen-
erally increase as pressures rise [15,16]. The background leakage refers to leaks through
various cracks and holes in the pipe, but their location and geometry are not known. Hence,
only an average estimation of these leaks is possible [17]. Previous studies [18] showed
that in some cases, the leakage is competing against the energy cost of pumping: when the
demands are low (usually at night when the energy tariffs are low), the pressure in the
system is high, thus generating significant leakage. As a result, the tendency to pump at low
night tariffs may contradict the objective of leakage minimization. A method is proposed
in this study to generate multi-objective optimization between the leakage and the energy
cost by two steps: the first focused on the calibration of the leakage and its calculation, and
the second focused on the multi-objective optimization technique involving the leakage
and the energy cost.

2. Methodology
2.1. Leakage Calibration and Calculation

Several studies tried to model the connection between background leakage and pres-
sure. The most common experimental relationship between leakage and pressure is de-
scribed by Giustolisi et al. [19], based on the work of Germanopoulos [15], as:

qk−leak = βklkPαk
k (1)

where Pk is the average pressure in pipe k; lk is the length of pipe k; qk−leak are the water
losses in pipe k and α; β are leakage model parameters.

The conventional view was that leakage from water distribution systems is relatively
insensitive to pressure. According to the orifice equation, the leakage exponent α is constant
with value of 0.5, but a number of field studies have shown that α can be considerably
larger than 0.5, and typically varies between 0.5 and 2.79 with a median of 1.15. This
means that leakage in water distribution systems is much more sensitive to pressure
than conventionally believed. The reasons for the high leakage exponents are not well
understood, but an important cause is believed to be the expansion of the hole opening
with increasing pressure [20].

The parameters that have been found to mostly affect the leakage parameters are the
age of the pipe and its material. Previous studies tried to calculate possible values of α and
β or to find a connection between them and the pipe characteristics. The authors of [21]
and [22] suggested that α = 1.18 by experimental comparisons with field data. The range
of values of α between 0.50–2.50 proposed by [23] was depending on the dominant type
of leaks. In the work of [24], experimental results for α with different pipes and types of
cracks (α = 0.79–1.04) associated with longitudinal cracks in cement pipes were shown, and
wider ranges were found for PVC and steel in different types of cracks.

However, a functional relation between α, β and the pipe characteristics has not been
found. Hence, a leakage calibration compared with field data is needed to find possible
values of α and β [25]. The calibration model uses an optimization technique with genetic
algorithm (GA) in order to find appropriate values of α and β. The pipes in the network are
classified into groups (according to the pipe material), and objective function (Equation (2))
should be minimized:

Z = (VLR − VLC)
2 +

N

∑
i

T

∑
t
(PRi,t − PCi,t)

2 (2)
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where VLR is the known total leakage volume in the network (the difference between the
total pumped flow and the sum of all the demands in the network); PRi,t is the known
pressure value in node i in every time step; VLC (αi, βi) is the calculated total leakage in the
network, depending on the values of αi, βi in every iteration; PCi,t (αi, βi) is the calculated
pressure in node i. The approach and model outlined herein assumes knowledge of the
system layout and behavior.

This objective function represents ‘distance’ between known values of the field data
(pressure and total water losses) and the same calculated values of the model. The second
element of Equation (2) (the pressure differences) targeted to minimize the ‘cloud’ of the
possible solutions of the calibration problem by forcing the solutions to be most similar as
possible to the field data in every node and every time step. The existence of this ‘cloud’
is a common phenomenon in calibration problems reflecting the suitability of different
solutions to the terms of the problem.

The decision variables are αi, βi for every group of pipes, and the constraints are
Equations (3)–(8) [25]):

αi min ≤ αi ≤ αi max (3)

βi min ≤ βi ≤ βi max (4)

The ranges of α, β for every material could be limited on the basis of previous experi-
ments (if existing). Otherwise, wider ranges could be given.

[PVP]R = [PVP]c (5)

[PVP] is a Boolean matrix representing the Pumps Valve Patterns (PVP) with dimen-
sion of n × T, (n is the number of pumps, T is the number of time intervals, e.g., 24 h). R
represents the real data and c represents the proposed solution. The proposed solution
must be under the same operational conditions as the field data.

SkR(t=0) = Skc(t=0) (6)

SkR(t=t f inal)
− Skc(t=0) ≤ ε (7)

This constraint (Equations (6) and (7)), as well as the former one (Equation (5)), forces
the proposed solution to be under the same operational conditions as the field data. Sk(t=0)
represents the water level in tank k at the beginning of the operation (the real and the
proposed values must be identical), and Sk(t=t f inal)

is the water level in tank k at the end of
the operation (the real and the calculated values at the end should be close enough).

Pmin ≤ Pj(t) ≤ Pmax (8)

The pressure at every node should be bounded between Pmax and Pmin allowed.
Herein, as above, the proposed solution must be under the same operational conditions as
the field data.

A new method is proposed in this study to calculate the leakage by creating imaginary
junctions in the middle of every pipe in the network. The leakage in every pipe is now
“represented” by the demand at these nodes. At the first iteration, the demands at these
nodes are set to zero and hydraulic simulation is being done. In the next iterations, the
demands in the imaginary nodes are calculated with Formula (1), based on the previous
iteration result, and inserted as an input to the simulation. Convergence is achieved while
the pressure and the “demands” in all the imaginary nodes are close enough to those
achieved in the previous iteration.

Solution scheme of the leakage calibration and calculation process is described in
Figure 1. Note in Figure 1 that a high penalty will be inquired to individuals of the
GA population in case they violate any of the constraints, and that the GA stops once a
maximum predefined value of generations is attained. The importance of such a calibration,
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except finding estimated values of the leakage parameters (αi, βi), is the ability to estimate
the distribution of the leakage along the pipes in the network.
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2.2. Multi-Objective Optimization Problem

The optimization problem of leakage and energy cost have already been examined [5]
as a classic minimizing problem with a single objective function of total cost. In that case,
the “price” of the leakage came into account by the water price and the extra energy needed
for pumping the lost water. The work of [26] used multi-objective optimization in the
design problem, and many objectives including leakage, water age, fire flow deficit, and
cost minimized simultaneously.

In this study, the multi-objective optimization focused on the operation problem. Two
objectives—the leakage, as well as the total energy cost, are minimized at once. The reason
for this kind of optimization is the idea that in some cases, especially in areas with water
shortage, the goal of leakage minimization is not just a matter of water cost, but also
connected to reliability, long-term design of the water sector and possible damages to
the natural water sources (in case of over demand). These aspects sometimes cannot be
measured directly by the cost scale. Hence, the examination of the energy cost and the total
leakage as two competitive different objectives can enable more flexibility.

2.3. Model Formulation

The decision variable of the problem is a binary matrix B[J, T] representing the schedul-
ing of J pumping units. The value of B[j, ti] cells will be 1 if the unit on arc j is active on
time ti, and 0 otherwise.

The first objective function, as discussed, is the energy cost ($), and the second is the
total percentage of the leakage in the network:

f1 = Cost($) =
T

∑
i=1

 ∑
jÎAp

γ × Qj(ti)× ∆Hj

ηj
× B[j, ti]× ET(ti)

ti (9)
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f2 = Leak(%) =
∑T

i=1 ∑(k,w) ql k,w(ti)

∑T
i=1 ∑j Qj(ti)

× 100 (10)

where T is the number of time intervals; i counts the time intervals (1, . . . T); A is a set of
arcs (subset of arcs indexed Aj where pumps are located); γ is the unit conversion factor;
ηj is the efficiency of the pumps in arc j; Qj(ti) is the flow in arc j in time period ti (m3/s);
∆Hj is the head gain at pumping station located on arc j (m); ET(ti) is the electricity tariffs
($/KWh) in time period ti; ql k,w(ti) are the water losses in the pipe which connects nodes k
and w at time period ti (m3/h); Pk,w(ti) is the pressure head in the intermediate node built
between nodes k and w; lk,w is the length of the pipe which connects nodes k and w (m);
αk,w, βk,w are the experimental leakage constants of the pipe which connects nodes k and w,
and Sx(ti) is the water level in the tank indexed x at time period ti (‘nst’ is the number of
the storage tanks in the network).

The constraints in this case are:

Pmin ≤ Pw(ti) ≤ Pmax (11)

The pressure at every node should be bounded between Pmax and Pmin allowed.

∑nst
x=1 St=t0

x − ∑nst
x=1 S

t=t f inal
x

∑nst
x=1 S

t=t f inal
x

≤ ε (12)

The relative difference between the water level in the tanks at t = 0 and t = t f inal is
bounded by a small constant tolerance [27].

The solution scheme of the optimization problem is described in Figure 2, and is
based on using a multi-objective optimization by genetic algorithm (multi-objective GA).
In multi-objective optimization, the interaction among different objectives creates a set of
compromised solutions, known as Pareto-Optimal solutions, or non-dominated solutions.
In this Pareto-Optimal set of solutions, it is not possible to improve one objective without
making at least one of the others worse. The consideration of multiple objectives in the
analysis process of water distribution systems provides major improvements compared to
using only one objective function: a wider range of alternatives is explored for decision-
making, and the model outcome is much more realistic. It should be mentioned that the two
functions (leakage and energy cost) used herein are not always competing with each other.
Extra leakage will also increase the pumped flow and, as a result, the energy cost. On the
other hand, when the demand pattern reflects significant difference between the demands
during low and high tariffs, it will probably lead to a stronger effect of leakage-cost conflict
(as mentioned before) so ‘all in all’ competition between these two functions could be
obtained in some cases. Convergence in Figure 2 refers to no additional solutions added to
the Pareto-Optimal solutions set for a couple of GA generations.

2.4. Example Applications

Two example applications are presented in this study and based on EPANET network
examples 1, 3 with minor changes. In example number 1, the calibration process and
the multi-objective optimization is presented, and for example number 3, the idea of the
multi-objective operation is extended and presented.
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3. Results and Discussion
3.1. Example 1

In Example 1, the pipes in the network are classified into three groups according to
the pipe material. The red pipes in Figure 3 were chosen randomly to be cement pipes, the
black pipes from steel and the green from PVC. The classification could also be done with
other materials or with uniform materials with classification by other factors such as pipe
age. The system consists of constant head source, one elevated tank, 12 pipes, 9 nodes, and
1 pumping station. The data for the pipes and demands is as that of example 1 in EPANET
(the network is now called net 1-b), and the classification and the network are shown in
Figure 3.
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The absence of real experimental data in this example has forced to generate dummy
experimental data with EPANET. In this example, random feasible solution was chosen
to represent the experimental data. Figure 4 describes the characteristics of this dummy
scenario (water level in the tank during 24 h along with the pump flow rates). The total
leakage in the network under this dummy scenario was calculated to be 15%. The chosen
proposed ranges of αi and βi are presented in Table 1.
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Table 1. Chosen αi and βi ranges.

Material αi Possible Range βi Possible Range

Cement 0.75 ≤ αi ≤ 1.1 10−7 ≤ βi ≤ 10−5

Steel 1 ≤ αi ≤ 1.3 10−6 ≤ βi ≤ 10−4

PVC 1.1 ≤ αi ≤ 1.5 10−5 ≤ βi ≤ 10−4

After using the solution scheme described in Figure 1, the best GA solution was
obtained after 51 generations. The leakage was found to be 15.22% (reflects 0.22% error
relative to the field data). and its parameters were found (and presented in Table 2) for
every group of pipes.

Table 2. Results for αi and βi (using field data described in Figure 4).

Material Cement (Red) Steel (Black) PVC (Blue)

αi 1.01 1.19 1.24
βi 7 × 10−6 1.1 × 10−5 1.4 × 10−5

Total calculated leakage = 15.22%

Figure 5 shows the values of α and β after sensitivity analysis for different leakage
scenarios between 15–30% (meaning that other dummy experimental data is given and
the pipes are different from the base run). The α and β values were found to be lowest for
cement pipes and highest for the PVC pipes. Interestingly, no definite relationship was
obtained between the leakage parameters and % leakage from Figure 5.
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The results in Table 2 will be used as reference results, and will be considered as
known and constant values in the optimization process described in Figure 2. In order
to generate a conflict between the leakage and energy cost, the demand pattern has been
changed significantly (the multiplier of the base demand was increased). The energy tariffs
and the demand pattern are described in Figure 6. A diurnal variation in the demand was
considered, as depicted in Figure 6. For analysis, the pumping station was extended into
three units, as described in Figure 7. The modified network (compared to Figure 3) with
pumps and diurnal demand pattern is renamed as net 1-c.
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Figure 6. Demand pattern and electricity tariffs for net 1-c.

After using the solution scheme described in Figure 2 a multi-objective Pareto was
received after 138 generations of GA. Sensitivity analysis with other electricity tariffs have
been examined and found to change the results of the Pareto. The different electricity tariff
scenarios are presented in Figures 8 and 9, the base run along with the sensitivity analysis
results are presented. Two examples of the pump scheduling for two representing points
(circled) are also presented. Expectedly, a negative relationship was obtained between the
energy cost from pumping and the leakage rate. For the three scenarios considered (base
run and sensitivity analysis), variation in the energy cost of pumping versus leakage was
found to almost cease beyond 13% leakage rate.
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Figure 9. Base run and sensitivity analysis results for different electricity scenarios in net 1-c. Two examples of the pump
scheduling solution for two representing points are (circled) presented on the right.

3.2. Complex Network

As discussed before, the second network that was chosen to present the multi-objective
optimization is based on example number 3 of the EPANET. The system consists of two
constant head sources: Lake and a River; 3 elevated tanks: Tank 1, Tank 2, and Tank 3;
120 pipes and 94 nodes (consumers’ and internal nodes).
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Nonetheless, few changes were made in the network, as depicted in Figure 10. The
network was partitioned into three groups of pipes with different values of α and β for
every group of pipes (based on the assumption that the calibration of leakage parameters
was already done). The chosen values of α and β are shown in Table 3. Furthermore, at
both source nodes (with one pumping station each), an additional pumping station was
added. Thus, in total, there are four units, with new curves, as described in Figure 10. The
demand pattern selected is the same as described in Figure 7, and the other properties of
the network are the same as EPANET example number 3.
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Table 3. Values of αi and βi for net 3-b (the assumption is that the calibration has already been done).

Pipe Group Parameter Solution

Old (Green)
βi 2 × 10−5

αi 1.3

Mid (Blue)
βi 1.5 × 10−5

αi 1.2

Young (Red) βi 1 × 10−5

αi 1.1

Two sensitivity analyses are presented for this example along with the base run. The
first is the same as presented for net 1-c (different electricity tariffs). The results obtained
are presented in Figure 11 having around 15 individuals at the non-dominated Pareto front
for each of the scenarios. Similar to the earlier case, an inverse relationship was obtained
between energy cost of pumping and the leakage in the network. However, in comparison
with Figure 9, the variation between the energy cost and leakage was observed to cease
at a relatively smaller leakage rate itself. This could be presumed to the varying network
characteristics of the two systems selected for the analysis here.
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Another sensitivity analysis has been examined for different values of α (see Table 4;
β remains as described in Table 3), and presented in Figure 12. It should be mentioned
that for many values of α, it was impossible to obtain feasible solutions (the main reason is
forbidden negative pressure as defined in Equation (11)). It found that the solution is very
sensitive for changing α (Figure 12, having about 30 solutions for each of the scenarios at
the non-dominated Pareto front), and in some cases, specific values of α reflected situations
that the two objective functions are not competing with each other (as described in the
Introduction Section as a possibility). Hence, only values of α that created feasible solutions
and Pareto front are presented.
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Table 4. Values of α in three scenarios.

Pipe Group Scenario I Scenario II Scenario III

Old (green) 1.3 1.423 1.182
Mid (blue) 1.2 1.327 1.120

Young (red) 1.1 1.223 1.060
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4. Conclusions

In this study, a multi-objective water distribution systems’ optimization problem
incorporating pumps’ optimal scheduling and leakage minimization was developed and
solved to obtain optimal operational strategies between the energy cost of pumping and
the background leakage in the network. An iterative optimization model was presented
for calibrating and computing the leakage parameters (α, β) for estimating the leakage and
distribution in water distribution systems and recognizing the critical impact of leakage
control on system operation.

From the results, a balance between the leakage and the energy cost was observed,
possibly by the competitiveness of the objectives that were minimized simultaneously
in the proposed optimization model. The competition was achieved particularly during
the periods when the difference between the demands during low and high tariffs was
significant. From the results, it was found that pumping during high electricity tariffs
(when the demands are high) could generate pressure distribution that decreases the total
leakage compared to the pump schedule that reflects the natural tendency to pump as
much as possible at low tariffs.

After altering the electricity rates, a similar trend was observed. Furthermore, it was
noticed that as the differences in the electricity rates between day and night become smaller
(the white and the gray scenarios), the Pareto front becomes moderate. This reflected the
lower competitiveness between the leakage and the energy cost. It also found that the
solution obtained is very sensitive to changing the values of α (the leakage exponent). In
some cases, this change disrupted the contradictory balance between the two objectives
(leakage and energy cost). Even small changes in α resulted in significant variations in the
leakages and consequently affected the pump scheduling optimal strategies of the network.

Although this model is limited to a specific situation (significant difference between
the demands during low and high tariffs) and very sensitive to values of α (less to values
of ¦Â), it presents an idea that could improve the decision-making process of a water
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distribution system’s operation. The present paper presents possible outcomes to the
network operators from which they may choose the energy-efficient scheduling or pump
scheduling that reflects minimum leakage based on varying preferences. An additional
improvement of the model can be in increasing the resolution of the demands’ timescale
to better reflect the instantaneous behavior of the system during the calibration process.
Other objective functions, such as modifying Equation (2) to be dimensionless, can also
be incorporated.

In the future, this model could be extended to other aspects of water distribution
systems such as reliability and water quality that, in some cases, may also contradict the
energy cost, the leakage, and each other. Such a comprehensive multi-objective model
could generate solutions combining all the possible factors and variables of the water
distribution system’s operation problem. Furthermore, it may present advanced flexibility
to the system operators.
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